Extensions 1→N→G→Q→1 with N=C3 and Q=S3×SL2(𝔽3)

Direct product G=N×Q with N=C3 and Q=S3×SL2(𝔽3)
dρLabelID
C3×S3×SL2(𝔽3)484C3xS3xSL(2,3)432,623

Semidirect products G=N:Q with N=C3 and Q=S3×SL2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C3⋊(S3×SL2(𝔽3)) = C3⋊S3×SL2(𝔽3)φ: S3×SL2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C372C3:(S3xSL(2,3))432,626

Non-split extensions G=N.Q with N=C3 and Q=S3×SL2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C3.1(S3×SL2(𝔽3)) = D18.A4φ: S3×SL2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C37212-C3.1(S3xSL(2,3))432,263
C3.2(S3×SL2(𝔽3)) = D9×SL2(𝔽3)φ: S3×SL2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C3724-C3.2(S3xSL(2,3))432,264
C3.3(S3×SL2(𝔽3)) = Q8⋊He3⋊C2φ: S3×SL2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C37212-C3.3(S3xSL(2,3))432,270
C3.4(S3×SL2(𝔽3)) = S3×Q8⋊C9central extension (φ=1)1444C3.4(S3xSL(2,3))432,268

׿
×
𝔽