Extensions 1→N→G→Q→1 with N=C216 and Q=C2

Direct product G=N×Q with N=C216 and Q=C2
dρLabelID
C2×C216432C2xC216432,23

Semidirect products G=N:Q with N=C216 and Q=C2
extensionφ:Q→Aut NdρLabelID
C2161C2 = D216φ: C2/C1C2 ⊆ Aut C2162162+C216:1C2432,8
C2162C2 = C216⋊C2φ: C2/C1C2 ⊆ Aut C2162162C216:2C2432,7
C2163C2 = C8×D27φ: C2/C1C2 ⊆ Aut C2162162C216:3C2432,5
C2164C2 = C8⋊D27φ: C2/C1C2 ⊆ Aut C2162162C216:4C2432,6
C2165C2 = D8×C27φ: C2/C1C2 ⊆ Aut C2162162C216:5C2432,25
C2166C2 = SD16×C27φ: C2/C1C2 ⊆ Aut C2162162C216:6C2432,26
C2167C2 = M4(2)×C27φ: C2/C1C2 ⊆ Aut C2162162C216:7C2432,24

Non-split extensions G=N.Q with N=C216 and Q=C2
extensionφ:Q→Aut NdρLabelID
C216.1C2 = Dic108φ: C2/C1C2 ⊆ Aut C2164322-C216.1C2432,4
C216.2C2 = C27⋊C16φ: C2/C1C2 ⊆ Aut C2164322C216.2C2432,1
C216.3C2 = Q16×C27φ: C2/C1C2 ⊆ Aut C2164322C216.3C2432,27

׿
×
𝔽