Copied to
clipboard

G = D216order 432 = 24·33

Dihedral group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: D216, C271D8, C3.D72, C9.D24, C81D27, C2161C2, C72.2S3, C24.2D9, C6.3D36, C54.3D4, D1081C2, C2.5D108, C4.10D54, C18.3D12, C36.53D6, C12.53D18, C108.10C22, sometimes denoted D432 or Dih216 or Dih432, SmallGroup(432,8)

Series: Derived Chief Lower central Upper central

C1C108 — D216
C1C3C9C27C54C108D108 — D216
C27C54C108 — D216
C1C2C4C8

Generators and relations for D216
 G = < a,b | a216=b2=1, bab=a-1 >

108C2
108C2
54C22
54C22
36S3
36S3
27D4
27D4
18D6
18D6
12D9
12D9
27D8
9D12
9D12
6D18
6D18
4D27
4D27
9D24
3D36
3D36
2D54
2D54
3D72

Smallest permutation representation of D216
On 216 points
Generators in S216
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216)
(1 135)(2 134)(3 133)(4 132)(5 131)(6 130)(7 129)(8 128)(9 127)(10 126)(11 125)(12 124)(13 123)(14 122)(15 121)(16 120)(17 119)(18 118)(19 117)(20 116)(21 115)(22 114)(23 113)(24 112)(25 111)(26 110)(27 109)(28 108)(29 107)(30 106)(31 105)(32 104)(33 103)(34 102)(35 101)(36 100)(37 99)(38 98)(39 97)(40 96)(41 95)(42 94)(43 93)(44 92)(45 91)(46 90)(47 89)(48 88)(49 87)(50 86)(51 85)(52 84)(53 83)(54 82)(55 81)(56 80)(57 79)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)(136 216)(137 215)(138 214)(139 213)(140 212)(141 211)(142 210)(143 209)(144 208)(145 207)(146 206)(147 205)(148 204)(149 203)(150 202)(151 201)(152 200)(153 199)(154 198)(155 197)(156 196)(157 195)(158 194)(159 193)(160 192)(161 191)(162 190)(163 189)(164 188)(165 187)(166 186)(167 185)(168 184)(169 183)(170 182)(171 181)(172 180)(173 179)(174 178)(175 177)

G:=sub<Sym(216)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,135)(2,134)(3,133)(4,132)(5,131)(6,130)(7,129)(8,128)(9,127)(10,126)(11,125)(12,124)(13,123)(14,122)(15,121)(16,120)(17,119)(18,118)(19,117)(20,116)(21,115)(22,114)(23,113)(24,112)(25,111)(26,110)(27,109)(28,108)(29,107)(30,106)(31,105)(32,104)(33,103)(34,102)(35,101)(36,100)(37,99)(38,98)(39,97)(40,96)(41,95)(42,94)(43,93)(44,92)(45,91)(46,90)(47,89)(48,88)(49,87)(50,86)(51,85)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(136,216)(137,215)(138,214)(139,213)(140,212)(141,211)(142,210)(143,209)(144,208)(145,207)(146,206)(147,205)(148,204)(149,203)(150,202)(151,201)(152,200)(153,199)(154,198)(155,197)(156,196)(157,195)(158,194)(159,193)(160,192)(161,191)(162,190)(163,189)(164,188)(165,187)(166,186)(167,185)(168,184)(169,183)(170,182)(171,181)(172,180)(173,179)(174,178)(175,177)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,135)(2,134)(3,133)(4,132)(5,131)(6,130)(7,129)(8,128)(9,127)(10,126)(11,125)(12,124)(13,123)(14,122)(15,121)(16,120)(17,119)(18,118)(19,117)(20,116)(21,115)(22,114)(23,113)(24,112)(25,111)(26,110)(27,109)(28,108)(29,107)(30,106)(31,105)(32,104)(33,103)(34,102)(35,101)(36,100)(37,99)(38,98)(39,97)(40,96)(41,95)(42,94)(43,93)(44,92)(45,91)(46,90)(47,89)(48,88)(49,87)(50,86)(51,85)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(136,216)(137,215)(138,214)(139,213)(140,212)(141,211)(142,210)(143,209)(144,208)(145,207)(146,206)(147,205)(148,204)(149,203)(150,202)(151,201)(152,200)(153,199)(154,198)(155,197)(156,196)(157,195)(158,194)(159,193)(160,192)(161,191)(162,190)(163,189)(164,188)(165,187)(166,186)(167,185)(168,184)(169,183)(170,182)(171,181)(172,180)(173,179)(174,178)(175,177) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216)], [(1,135),(2,134),(3,133),(4,132),(5,131),(6,130),(7,129),(8,128),(9,127),(10,126),(11,125),(12,124),(13,123),(14,122),(15,121),(16,120),(17,119),(18,118),(19,117),(20,116),(21,115),(22,114),(23,113),(24,112),(25,111),(26,110),(27,109),(28,108),(29,107),(30,106),(31,105),(32,104),(33,103),(34,102),(35,101),(36,100),(37,99),(38,98),(39,97),(40,96),(41,95),(42,94),(43,93),(44,92),(45,91),(46,90),(47,89),(48,88),(49,87),(50,86),(51,85),(52,84),(53,83),(54,82),(55,81),(56,80),(57,79),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69),(136,216),(137,215),(138,214),(139,213),(140,212),(141,211),(142,210),(143,209),(144,208),(145,207),(146,206),(147,205),(148,204),(149,203),(150,202),(151,201),(152,200),(153,199),(154,198),(155,197),(156,196),(157,195),(158,194),(159,193),(160,192),(161,191),(162,190),(163,189),(164,188),(165,187),(166,186),(167,185),(168,184),(169,183),(170,182),(171,181),(172,180),(173,179),(174,178),(175,177)]])

111 conjugacy classes

class 1 2A2B2C 3  4  6 8A8B9A9B9C12A12B18A18B18C24A24B24C24D27A···27I36A···36F54A···54I72A···72L108A···108R216A···216AJ
order12223468899912121818182424242427···2736···3654···5472···72108···108216···216
size11108108222222222222222222···22···22···22···22···22···2

111 irreducible representations

dim11122222222222222
type+++++++++++++++++
imageC1C2C2S3D4D6D8D9D12D18D24D27D36D54D72D108D216
kernelD216C216D108C72C54C36C27C24C18C12C9C8C6C4C3C2C1
# reps11211123234969121836

Matrix representation of D216 in GL2(𝔽433) generated by

40403
3010
,
290300
157143
G:=sub<GL(2,GF(433))| [40,30,403,10],[290,157,300,143] >;

D216 in GAP, Magma, Sage, TeX

D_{216}
% in TeX

G:=Group("D216");
// GroupNames label

G:=SmallGroup(432,8);
// by ID

G=gap.SmallGroup(432,8);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,92,254,58,2804,557,10085,292,14118]);
// Polycyclic

G:=Group<a,b|a^216=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D216 in TeX

׿
×
𝔽