# Extensions 1→N→G→Q→1 with N=C32×C3⋊D4 and Q=C2

Direct product G=N×Q with N=C32×C3⋊D4 and Q=C2
dρLabelID
C3×C6×C3⋊D472C3xC6xC3:D4432,709

Semidirect products G=N:Q with N=C32×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×C3⋊D4)⋊1C2 = C3×D6.3D6φ: C2/C1C2 ⊆ Out C32×C3⋊D4244(C3^2xC3:D4):1C2432,652
(C32×C3⋊D4)⋊2C2 = C3×D6.4D6φ: C2/C1C2 ⊆ Out C32×C3⋊D4244(C3^2xC3:D4):2C2432,653
(C32×C3⋊D4)⋊3C2 = C3×S3×C3⋊D4φ: C2/C1C2 ⊆ Out C32×C3⋊D4244(C3^2xC3:D4):3C2432,658
(C32×C3⋊D4)⋊4C2 = C3×Dic3⋊D6φ: C2/C1C2 ⊆ Out C32×C3⋊D4244(C3^2xC3:D4):4C2432,659
(C32×C3⋊D4)⋊5C2 = C62.90D6φ: C2/C1C2 ⊆ Out C32×C3⋊D472(C3^2xC3:D4):5C2432,675
(C32×C3⋊D4)⋊6C2 = C62.91D6φ: C2/C1C2 ⊆ Out C32×C3⋊D472(C3^2xC3:D4):6C2432,676
(C32×C3⋊D4)⋊7C2 = C3⋊S3×C3⋊D4φ: C2/C1C2 ⊆ Out C32×C3⋊D472(C3^2xC3:D4):7C2432,685
(C32×C3⋊D4)⋊8C2 = C6223D6φ: C2/C1C2 ⊆ Out C32×C3⋊D436(C3^2xC3:D4):8C2432,686
(C32×C3⋊D4)⋊9C2 = S3×D4×C32φ: C2/C1C2 ⊆ Out C32×C3⋊D472(C3^2xC3:D4):9C2432,704
(C32×C3⋊D4)⋊10C2 = C32×D42S3φ: C2/C1C2 ⊆ Out C32×C3⋊D472(C3^2xC3:D4):10C2432,705
(C32×C3⋊D4)⋊11C2 = C32×C4○D12φ: trivial image72(C3^2xC3:D4):11C2432,703

׿
×
𝔽