Copied to
clipboard

G = C3xS3xC3:D4order 432 = 24·33

Direct product of C3, S3 and C3:D4

direct product, metabelian, supersoluble, monomial

Aliases: C3xS3xC3:D4, C62:29D6, D6:6(S3xC6), (S3xC6):17D6, C62:9(C2xC6), C32:9(C6xD4), C33:19(C2xD4), C3:D12:5C6, D6:S3:5C6, (S3xC62):3C2, (S3xDic3):3C6, Dic3:1(S3xC6), (S3xC32):6D4, C32:26(S3xD4), C32:7D4:6C6, (C3xDic3):10D6, (C3xC62):1C22, (C32xC6).36C23, (C32xDic3):5C22, (C2xC6):8S32, C3:5(C3xS3xD4), (C2xS32):3C6, (S32xC6):7C2, (S3xC2xC6):5C6, (S3xC2xC6):5S3, C2.17(S32xC6), C22:3(C3xS32), C3:2(C6xC3:D4), C6.17(S3xC2xC6), (S3xC6):6(C2xC6), C6.120(C2xS32), (C2xC6):10(S3xC6), (C3xS3):2(C3xD4), (C3xC3:D4):3C6, (S3xC3xC6):9C22, (C3xS3xDic3):8C2, (C6xC3:S3):7C22, C3:Dic3:3(C2xC6), (C22xS3):5(C3xS3), (C3xDic3):1(C2xC6), (C3xC32:7D4):8C2, (C32xC3:D4):3C2, C32:18(C2xC3:D4), (C3xC3:D12):11C2, (C3xD6:S3):12C2, (C3xC6).27(C22xC6), (C3xC6).141(C22xS3), (C3xC3:Dic3):10C22, (C2xC3:S3):5(C2xC6), SmallGroup(432,658)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xS3xC3:D4
C1C3C32C3xC6C32xC6S3xC3xC6S32xC6 — C3xS3xC3:D4
C32C3xC6 — C3xS3xC3:D4
C1C6C2xC6

Generators and relations for C3xS3xC3:D4
 G = < a,b,c,d,e,f | a3=b3=c2=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 1032 in 290 conjugacy classes, 72 normal (64 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, S3, C6, C6, C2xC4, D4, C23, C32, C32, Dic3, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3xS3, C3:S3, C3xC6, C3xC6, C4xS3, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C33, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S32, S3xC6, S3xC6, C2xC3:S3, C62, C62, S3xD4, C2xC3:D4, C6xD4, S3xC32, S3xC32, C3xC3:S3, C32xC6, C32xC6, S3xDic3, D6:S3, C3:D12, S3xC12, C3xD12, C6xDic3, C3xC3:D4, C3xC3:D4, C32:7D4, D4xC32, C2xS32, S3xC2xC6, S3xC2xC6, C2xC62, C32xDic3, C3xC3:Dic3, C3xS32, S3xC3xC6, S3xC3xC6, C6xC3:S3, C3xC62, S3xC3:D4, C3xS3xD4, C6xC3:D4, C3xS3xDic3, C3xD6:S3, C3xC3:D12, C32xC3:D4, C3xC32:7D4, S32xC6, S3xC62, C3xS3xC3:D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, S32, S3xC6, S3xD4, C2xC3:D4, C6xD4, C3xC3:D4, C2xS32, S3xC2xC6, C3xS32, S3xC3:D4, C3xS3xD4, C6xC3:D4, S32xC6, C3xS3xC3:D4

Permutation representations of C3xS3xC3:D4
On 24 points - transitive group 24T1280
Generators in S24
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 17 16)(2 13 18)(3 19 14)(4 15 20)(5 10 23)(6 24 11)(7 12 21)(8 22 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 6)(7 8)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 22)(23 24)

G:=sub<Sym(24)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)>;

G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24) );

G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,17,16),(2,13,18),(3,19,14),(4,15,20),(5,10,23),(6,24,11),(7,12,21),(8,22,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,22),(23,24)]])

G:=TransitiveGroup(24,1280);

81 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C···3H3I3J3K4A4B6A6B6C···6P6Q6R6S6T6U···6AF6AG···6AV6AW6AX6AY6AZ6BA12A12B12C12D12E12F12G
order12222222333···333344666···666666···66···66666612121212121212
size112336618112···2444618112···233334···46···61212121818661212121818

81 irreducible representations

dim11111111111111112222222222222244444444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6S3S3D4D6D6D6C3xS3C3xS3C3:D4C3xD4S3xC6S3xC6S3xC6C3xC3:D4S32S3xD4C2xS32C3xS32S3xC3:D4C3xS3xD4S32xC6C3xS3xC3:D4
kernelC3xS3xC3:D4C3xS3xDic3C3xD6:S3C3xC3:D12C32xC3:D4C3xC32:7D4S32xC6S3xC62S3xC3:D4S3xDic3D6:S3C3:D12C3xC3:D4C32:7D4C2xS32S3xC2xC6C3xC3:D4S3xC2xC6S3xC32C3xDic3S3xC6C62C3:D4C22xS3C3xS3C3xS3Dic3D6C2xC6S3C2xC6C32C6C22C3C3C2C1
# reps11111111222222221121322244264811122224

Matrix representation of C3xS3xC3:D4 in GL4(F7) generated by

2000
0200
0020
0002
,
6031
5360
1645
3326
,
3315
2520
6612
3155
,
4121
3364
6642
6141
,
3100
4400
4563
0341
,
6350
2446
3102
4454
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[6,5,1,3,0,3,6,3,3,6,4,2,1,0,5,6],[3,2,6,3,3,5,6,1,1,2,1,5,5,0,2,5],[4,3,6,6,1,3,6,1,2,6,4,4,1,4,2,1],[3,4,4,0,1,4,5,3,0,0,6,4,0,0,3,1],[6,2,3,4,3,4,1,4,5,4,0,5,0,6,2,4] >;

C3xS3xC3:D4 in GAP, Magma, Sage, TeX

C_3\times S_3\times C_3\rtimes D_4
% in TeX

G:=Group("C3xS3xC3:D4");
// GroupNames label

G:=SmallGroup(432,658);
// by ID

G=gap.SmallGroup(432,658);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,303,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<