direct product, metabelian, supersoluble, monomial
Aliases: C3×S3×C3⋊D4, C62⋊29D6, D6⋊6(S3×C6), (S3×C6)⋊17D6, C62⋊9(C2×C6), C32⋊9(C6×D4), C33⋊19(C2×D4), C3⋊D12⋊5C6, D6⋊S3⋊5C6, (S3×C62)⋊3C2, (S3×Dic3)⋊3C6, Dic3⋊1(S3×C6), (S3×C32)⋊6D4, C32⋊26(S3×D4), C32⋊7D4⋊6C6, (C3×Dic3)⋊10D6, (C3×C62)⋊1C22, (C32×C6).36C23, (C32×Dic3)⋊5C22, (C2×C6)⋊8S32, C3⋊5(C3×S3×D4), (C2×S32)⋊3C6, (S32×C6)⋊7C2, (S3×C2×C6)⋊5C6, (S3×C2×C6)⋊5S3, C2.17(S32×C6), C22⋊3(C3×S32), C3⋊2(C6×C3⋊D4), C6.17(S3×C2×C6), (S3×C6)⋊6(C2×C6), C6.120(C2×S32), (C2×C6)⋊10(S3×C6), (C3×S3)⋊2(C3×D4), (C3×C3⋊D4)⋊3C6, (S3×C3×C6)⋊9C22, (C3×S3×Dic3)⋊8C2, (C6×C3⋊S3)⋊7C22, C3⋊Dic3⋊3(C2×C6), (C22×S3)⋊5(C3×S3), (C3×Dic3)⋊1(C2×C6), (C3×C32⋊7D4)⋊8C2, (C32×C3⋊D4)⋊3C2, C32⋊18(C2×C3⋊D4), (C3×C3⋊D12)⋊11C2, (C3×D6⋊S3)⋊12C2, (C3×C6).27(C22×C6), (C3×C6).141(C22×S3), (C3×C3⋊Dic3)⋊10C22, (C2×C3⋊S3)⋊5(C2×C6), SmallGroup(432,658)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×S3×C3⋊D4
G = < a,b,c,d,e,f | a3=b3=c2=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=fdf=d-1, fef=e-1 >
Subgroups: 1032 in 290 conjugacy classes, 72 normal (64 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, S3, C6, C6, C2×C4, D4, C23, C32, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, D12, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C62, C62, S3×D4, C2×C3⋊D4, C6×D4, S3×C32, S3×C32, C3×C3⋊S3, C32×C6, C32×C6, S3×Dic3, D6⋊S3, C3⋊D12, S3×C12, C3×D12, C6×Dic3, C3×C3⋊D4, C3×C3⋊D4, C32⋊7D4, D4×C32, C2×S32, S3×C2×C6, S3×C2×C6, C2×C62, C32×Dic3, C3×C3⋊Dic3, C3×S32, S3×C3×C6, S3×C3×C6, C6×C3⋊S3, C3×C62, S3×C3⋊D4, C3×S3×D4, C6×C3⋊D4, C3×S3×Dic3, C3×D6⋊S3, C3×C3⋊D12, C32×C3⋊D4, C3×C32⋊7D4, S32×C6, S3×C62, C3×S3×C3⋊D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, S32, S3×C6, S3×D4, C2×C3⋊D4, C6×D4, C3×C3⋊D4, C2×S32, S3×C2×C6, C3×S32, S3×C3⋊D4, C3×S3×D4, C6×C3⋊D4, S32×C6, C3×S3×C3⋊D4
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 17 16)(2 13 18)(3 19 14)(4 15 20)(5 10 23)(6 24 11)(7 12 21)(8 22 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 6)(7 8)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 22)(23 24)
G:=sub<Sym(24)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)>;
G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24) );
G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,17,16),(2,13,18),(3,19,14),(4,15,20),(5,10,23),(6,24,11),(7,12,21),(8,22,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,22),(23,24)]])
G:=TransitiveGroup(24,1280);
81 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 6A | 6B | 6C | ··· | 6P | 6Q | 6R | 6S | 6T | 6U | ··· | 6AF | 6AG | ··· | 6AV | 6AW | 6AX | 6AY | 6AZ | 6BA | 12A | 12B | 12C | 12D | 12E | 12F | 12G |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 2 | 3 | 3 | 6 | 6 | 18 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | 18 | 1 | 1 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | 12 | 12 | 18 | 18 | 6 | 6 | 12 | 12 | 12 | 18 | 18 |
81 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | C6 | C6 | S3 | S3 | D4 | D6 | D6 | D6 | C3×S3 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | S3×C6 | S3×C6 | C3×C3⋊D4 | S32 | S3×D4 | C2×S32 | C3×S32 | S3×C3⋊D4 | C3×S3×D4 | S32×C6 | C3×S3×C3⋊D4 |
kernel | C3×S3×C3⋊D4 | C3×S3×Dic3 | C3×D6⋊S3 | C3×C3⋊D12 | C32×C3⋊D4 | C3×C32⋊7D4 | S32×C6 | S3×C62 | S3×C3⋊D4 | S3×Dic3 | D6⋊S3 | C3⋊D12 | C3×C3⋊D4 | C32⋊7D4 | C2×S32 | S3×C2×C6 | C3×C3⋊D4 | S3×C2×C6 | S3×C32 | C3×Dic3 | S3×C6 | C62 | C3⋊D4 | C22×S3 | C3×S3 | C3×S3 | Dic3 | D6 | C2×C6 | S3 | C2×C6 | C32 | C6 | C22 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 2 | 4 | 4 | 2 | 6 | 4 | 8 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
Matrix representation of C3×S3×C3⋊D4 ►in GL4(𝔽7) generated by
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
6 | 0 | 3 | 1 |
5 | 3 | 6 | 0 |
1 | 6 | 4 | 5 |
3 | 3 | 2 | 6 |
3 | 3 | 1 | 5 |
2 | 5 | 2 | 0 |
6 | 6 | 1 | 2 |
3 | 1 | 5 | 5 |
4 | 1 | 2 | 1 |
3 | 3 | 6 | 4 |
6 | 6 | 4 | 2 |
6 | 1 | 4 | 1 |
3 | 1 | 0 | 0 |
4 | 4 | 0 | 0 |
4 | 5 | 6 | 3 |
0 | 3 | 4 | 1 |
6 | 3 | 5 | 0 |
2 | 4 | 4 | 6 |
3 | 1 | 0 | 2 |
4 | 4 | 5 | 4 |
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[6,5,1,3,0,3,6,3,3,6,4,2,1,0,5,6],[3,2,6,3,3,5,6,1,1,2,1,5,5,0,2,5],[4,3,6,6,1,3,6,1,2,6,4,4,1,4,2,1],[3,4,4,0,1,4,5,3,0,0,6,4,0,0,3,1],[6,2,3,4,3,4,1,4,5,4,0,5,0,6,2,4] >;
C3×S3×C3⋊D4 in GAP, Magma, Sage, TeX
C_3\times S_3\times C_3\rtimes D_4
% in TeX
G:=Group("C3xS3xC3:D4");
// GroupNames label
G:=SmallGroup(432,658);
// by ID
G=gap.SmallGroup(432,658);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,303,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations