# Extensions 1→N→G→Q→1 with N=C22×C3⋊S3 and Q=S3

Direct product G=N×Q with N=C22×C3⋊S3 and Q=S3
dρLabelID
C22×S3×C3⋊S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=C22×C3⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×C3⋊S3)⋊1S3 = C2×He32D4φ: S3/C1S3 ⊆ Out C22×C3⋊S372(C2^2xC3:S3):1S3432,320
(C22×C3⋊S3)⋊2S3 = C2×He33D4φ: S3/C1S3 ⊆ Out C22×C3⋊S372(C2^2xC3:S3):2S3432,322
(C22×C3⋊S3)⋊3S3 = C62⋊D6φ: S3/C1S3 ⊆ Out C22×C3⋊S33612+(C2^2xC3:S3):3S3432,323
(C22×C3⋊S3)⋊4S3 = C625D6φ: S3/C1S3 ⊆ Out C22×C3⋊S3186+(C2^2xC3:S3):4S3432,523
(C22×C3⋊S3)⋊5S3 = C22×C32⋊D6φ: S3/C1S3 ⊆ Out C22×C3⋊S336(C2^2xC3:S3):5S3432,545
(C22×C3⋊S3)⋊6S3 = C3⋊S3×S4φ: S3/C1S3 ⊆ Out C22×C3⋊S336(C2^2xC3:S3):6S3432,746
(C22×C3⋊S3)⋊7S3 = C6210D6φ: S3/C1S3 ⊆ Out C22×C3⋊S32412+(C2^2xC3:S3):7S3432,748
(C22×C3⋊S3)⋊8S3 = C2×C336D4φ: S3/C3C2 ⊆ Out C22×C3⋊S3144(C2^2xC3:S3):8S3432,680
(C22×C3⋊S3)⋊9S3 = C2×C338D4φ: S3/C3C2 ⊆ Out C22×C3⋊S372(C2^2xC3:S3):9S3432,682
(C22×C3⋊S3)⋊10S3 = C3⋊S3×C3⋊D4φ: S3/C3C2 ⊆ Out C22×C3⋊S372(C2^2xC3:S3):10S3432,685
(C22×C3⋊S3)⋊11S3 = C2×C339D4φ: S3/C3C2 ⊆ Out C22×C3⋊S348(C2^2xC3:S3):11S3432,694
(C22×C3⋊S3)⋊12S3 = C6224D6φ: S3/C3C2 ⊆ Out C22×C3⋊S3244(C2^2xC3:S3):12S3432,696
(C22×C3⋊S3)⋊13S3 = C22×C324D6φ: S3/C3C2 ⊆ Out C22×C3⋊S348(C2^2xC3:S3):13S3432,769

Non-split extensions G=N.Q with N=C22×C3⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×C3⋊S3).1S3 = C62.4D6φ: S3/C1S3 ⊆ Out C22×C3⋊S372(C2^2xC3:S3).1S3432,97
(C22×C3⋊S3).2S3 = C2×C6.S32φ: S3/C1S3 ⊆ Out C22×C3⋊S372(C2^2xC3:S3).2S3432,317
(C22×C3⋊S3).3S3 = C62⋊Dic3φ: S3/C1S3 ⊆ Out C22×C3⋊S32412+(C2^2xC3:S3).3S3432,743
(C22×C3⋊S3).4S3 = C62.78D6φ: S3/C3C2 ⊆ Out C22×C3⋊S3144(C2^2xC3:S3).4S3432,450
(C22×C3⋊S3).5S3 = C62.84D6φ: S3/C3C2 ⊆ Out C22×C3⋊S348(C2^2xC3:S3).5S3432,461
(C22×C3⋊S3).6S3 = C6211Dic3φ: S3/C3C2 ⊆ Out C22×C3⋊S3244(C2^2xC3:S3).6S3432,641
(C22×C3⋊S3).7S3 = C2×C339(C2×C4)φ: S3/C3C2 ⊆ Out C22×C3⋊S348(C2^2xC3:S3).7S3432,692
(C22×C3⋊S3).8S3 = C22×C33⋊C4φ: S3/C3C2 ⊆ Out C22×C3⋊S348(C2^2xC3:S3).8S3432,766
(C22×C3⋊S3).9S3 = C2×Dic3×C3⋊S3φ: trivial image144(C2^2xC3:S3).9S3432,677

׿
×
𝔽