# Extensions 1→N→G→Q→1 with N=D4×C33 and Q=C2

Direct product G=N×Q with N=D4×C33 and Q=C2
dρLabelID
D4×C32×C6216D4xC3^2xC6432,731

Semidirect products G=N:Q with N=D4×C33 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C33)⋊1C2 = C32×D4⋊S3φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3):1C2432,475
(D4×C33)⋊2C2 = C3×C327D8φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3):2C2432,491
(D4×C33)⋊3C2 = C3315D8φ: C2/C1C2 ⊆ Out D4×C33216(D4xC3^3):3C2432,507
(D4×C33)⋊4C2 = S3×D4×C32φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3):4C2432,704
(D4×C33)⋊5C2 = C32×D42S3φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3):5C2432,705
(D4×C33)⋊6C2 = C3×D4×C3⋊S3φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3):6C2432,714
(D4×C33)⋊7C2 = C3×C12.D6φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3):7C2432,715
(D4×C33)⋊8C2 = D4×C33⋊C2φ: C2/C1C2 ⊆ Out D4×C33108(D4xC3^3):8C2432,724
(D4×C33)⋊9C2 = C62.100D6φ: C2/C1C2 ⊆ Out D4×C33216(D4xC3^3):9C2432,725
(D4×C33)⋊10C2 = D8×C33φ: C2/C1C2 ⊆ Out D4×C33216(D4xC3^3):10C2432,517
(D4×C33)⋊11C2 = C4○D4×C33φ: trivial image216(D4xC3^3):11C2432,733

Non-split extensions G=N.Q with N=D4×C33 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C33).1C2 = C32×D4.S3φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3).1C2432,476
(D4×C33).2C2 = C3×C329SD16φ: C2/C1C2 ⊆ Out D4×C3372(D4xC3^3).2C2432,492
(D4×C33).3C2 = C3324SD16φ: C2/C1C2 ⊆ Out D4×C33216(D4xC3^3).3C2432,508
(D4×C33).4C2 = SD16×C33φ: C2/C1C2 ⊆ Out D4×C33216(D4xC3^3).4C2432,518

׿
×
𝔽