# Extensions 1→N→G→Q→1 with N=Q8×C33 and Q=C2

Direct product G=N×Q with N=Q8×C33 and Q=C2
dρLabelID
Q8×C32×C6432Q8xC3^2xC6432,732

Semidirect products G=N:Q with N=Q8×C33 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C33)⋊1C2 = C32×Q82S3φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3):1C2432,477
(Q8×C33)⋊2C2 = C3×C3211SD16φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3):2C2432,493
(Q8×C33)⋊3C2 = C3327SD16φ: C2/C1C2 ⊆ Out Q8×C33216(Q8xC3^3):3C2432,509
(Q8×C33)⋊4C2 = S3×Q8×C32φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3):4C2432,706
(Q8×C33)⋊5C2 = C32×Q83S3φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3):5C2432,707
(Q8×C33)⋊6C2 = C3×Q8×C3⋊S3φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3):6C2432,716
(Q8×C33)⋊7C2 = C3×C12.26D6φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3):7C2432,717
(Q8×C33)⋊8C2 = Q8×C33⋊C2φ: C2/C1C2 ⊆ Out Q8×C33216(Q8xC3^3):8C2432,726
(Q8×C33)⋊9C2 = (Q8×C33)⋊C2φ: C2/C1C2 ⊆ Out Q8×C33216(Q8xC3^3):9C2432,727
(Q8×C33)⋊10C2 = SD16×C33φ: C2/C1C2 ⊆ Out Q8×C33216(Q8xC3^3):10C2432,518
(Q8×C33)⋊11C2 = C4○D4×C33φ: trivial image216(Q8xC3^3):11C2432,733

Non-split extensions G=N.Q with N=Q8×C33 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C33).1C2 = C32×C3⋊Q16φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3).1C2432,478
(Q8×C33).2C2 = C3×C327Q16φ: C2/C1C2 ⊆ Out Q8×C33144(Q8xC3^3).2C2432,494
(Q8×C33).3C2 = C3315Q16φ: C2/C1C2 ⊆ Out Q8×C33432(Q8xC3^3).3C2432,510
(Q8×C33).4C2 = Q16×C33φ: C2/C1C2 ⊆ Out Q8×C33432(Q8xC3^3).4C2432,519

׿
×
𝔽