Copied to
clipboard

G = C3×Q8×C3⋊S3order 432 = 24·33

Direct product of C3, Q8 and C3⋊S3

direct product, metabelian, supersoluble, monomial

Aliases: C3×Q8×C3⋊S3, C3320(C2×Q8), C12.40(S3×C6), (Q8×C33)⋊6C2, C3215(S3×Q8), C3211(C6×Q8), (C3×C12).150D6, (Q8×C32)⋊14S3, (Q8×C32)⋊16C6, C324Q813C6, (C32×C6).91C23, (C32×C12).55C22, C33(C3×S3×Q8), C4.6(C6×C3⋊S3), C6.58(S3×C2×C6), (C4×C3⋊S3).5C6, (C3×Q8)⋊6(C3×S3), (C12×C3⋊S3).8C2, C12.57(C2×C3⋊S3), (C3×C12).59(C2×C6), C6.58(C22×C3⋊S3), (C6×C3⋊S3).67C22, C3⋊Dic3.24(C2×C6), (C3×C6).65(C22×C6), (C3×C324Q8)⋊15C2, (C3×C6).180(C22×S3), (C3×C3⋊Dic3).61C22, C2.8(C2×C6×C3⋊S3), (C2×C3⋊S3).27(C2×C6), SmallGroup(432,716)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3×Q8×C3⋊S3
C1C3C32C3×C6C32×C6C6×C3⋊S3C12×C3⋊S3 — C3×Q8×C3⋊S3
C32C3×C6 — C3×Q8×C3⋊S3
C1C6C3×Q8

Generators and relations for C3×Q8×C3⋊S3
 G = < a,b,c,d,e,f | a3=b4=d3=e3=f2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >

Subgroups: 740 in 276 conjugacy classes, 98 normal (16 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C2×C4, Q8, Q8, C32, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×Q8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, C2×C12, C3×Q8, C3×Q8, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, S3×Q8, C6×Q8, C3×C3⋊S3, C32×C6, C3×Dic6, S3×C12, C324Q8, C4×C3⋊S3, Q8×C32, Q8×C32, Q8×C32, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C3×S3×Q8, Q8×C3⋊S3, C3×C324Q8, C12×C3⋊S3, Q8×C33, C3×Q8×C3⋊S3
Quotients: C1, C2, C3, C22, S3, C6, Q8, C23, D6, C2×C6, C2×Q8, C3×S3, C3⋊S3, C3×Q8, C22×S3, C22×C6, S3×C6, C2×C3⋊S3, S3×Q8, C6×Q8, C3×C3⋊S3, S3×C2×C6, C22×C3⋊S3, C6×C3⋊S3, C3×S3×Q8, Q8×C3⋊S3, C2×C6×C3⋊S3, C3×Q8×C3⋊S3

Smallest permutation representation of C3×Q8×C3⋊S3
On 144 points
Generators in S144
(1 33 40)(2 34 37)(3 35 38)(4 36 39)(5 59 30)(6 60 31)(7 57 32)(8 58 29)(9 135 126)(10 136 127)(11 133 128)(12 134 125)(13 22 50)(14 23 51)(15 24 52)(16 21 49)(17 144 137)(18 141 138)(19 142 139)(20 143 140)(25 120 113)(26 117 114)(27 118 115)(28 119 116)(41 96 48)(42 93 45)(43 94 46)(44 95 47)(53 79 62)(54 80 63)(55 77 64)(56 78 61)(65 75 72)(66 76 69)(67 73 70)(68 74 71)(81 123 99)(82 124 100)(83 121 97)(84 122 98)(85 129 90)(86 130 91)(87 131 92)(88 132 89)(101 109 106)(102 110 107)(103 111 108)(104 112 105)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 76 3 74)(2 75 4 73)(5 42 7 44)(6 41 8 43)(9 123 11 121)(10 122 12 124)(13 62 15 64)(14 61 16 63)(17 111 19 109)(18 110 20 112)(21 54 23 56)(22 53 24 55)(25 130 27 132)(26 129 28 131)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 65 39 67)(38 68 40 66)(49 80 51 78)(50 79 52 77)(57 95 59 93)(58 94 60 96)(81 128 83 126)(82 127 84 125)(85 116 87 114)(86 115 88 113)(89 120 91 118)(90 119 92 117)(97 135 99 133)(98 134 100 136)(101 137 103 139)(102 140 104 138)(105 141 107 143)(106 144 108 142)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 34 50)(6 35 51)(7 36 52)(8 33 49)(9 141 115)(10 142 116)(11 143 113)(12 144 114)(13 59 37)(14 60 38)(15 57 39)(16 58 40)(17 117 125)(18 118 126)(19 119 127)(20 120 128)(25 133 140)(26 134 137)(27 135 138)(28 136 139)(41 71 78)(42 72 79)(43 69 80)(44 70 77)(45 75 53)(46 76 54)(47 73 55)(48 74 56)(61 96 68)(62 93 65)(63 94 66)(64 95 67)(81 110 89)(82 111 90)(83 112 91)(84 109 92)(85 124 108)(86 121 105)(87 122 106)(88 123 107)(97 104 130)(98 101 131)(99 102 132)(100 103 129)
(1 8 16)(2 5 13)(3 6 14)(4 7 15)(9 118 138)(10 119 139)(11 120 140)(12 117 137)(17 134 114)(18 135 115)(19 136 116)(20 133 113)(21 33 58)(22 34 59)(23 35 60)(24 36 57)(25 143 128)(26 144 125)(27 141 126)(28 142 127)(29 49 40)(30 50 37)(31 51 38)(32 52 39)(41 61 74)(42 62 75)(43 63 76)(44 64 73)(45 79 65)(46 80 66)(47 77 67)(48 78 68)(53 72 93)(54 69 94)(55 70 95)(56 71 96)(81 132 107)(82 129 108)(83 130 105)(84 131 106)(85 111 100)(86 112 97)(87 109 98)(88 110 99)(89 102 123)(90 103 124)(91 104 121)(92 101 122)
(1 110)(2 111)(3 112)(4 109)(5 85)(6 86)(7 87)(8 88)(9 78)(10 79)(11 80)(12 77)(13 100)(14 97)(15 98)(16 99)(17 73)(18 74)(19 75)(20 76)(21 81)(22 82)(23 83)(24 84)(25 94)(26 95)(27 96)(28 93)(29 89)(30 90)(31 91)(32 92)(33 107)(34 108)(35 105)(36 106)(37 103)(38 104)(39 101)(40 102)(41 115)(42 116)(43 113)(44 114)(45 119)(46 120)(47 117)(48 118)(49 123)(50 124)(51 121)(52 122)(53 127)(54 128)(55 125)(56 126)(57 131)(58 132)(59 129)(60 130)(61 135)(62 136)(63 133)(64 134)(65 139)(66 140)(67 137)(68 138)(69 143)(70 144)(71 141)(72 142)

G:=sub<Sym(144)| (1,33,40)(2,34,37)(3,35,38)(4,36,39)(5,59,30)(6,60,31)(7,57,32)(8,58,29)(9,135,126)(10,136,127)(11,133,128)(12,134,125)(13,22,50)(14,23,51)(15,24,52)(16,21,49)(17,144,137)(18,141,138)(19,142,139)(20,143,140)(25,120,113)(26,117,114)(27,118,115)(28,119,116)(41,96,48)(42,93,45)(43,94,46)(44,95,47)(53,79,62)(54,80,63)(55,77,64)(56,78,61)(65,75,72)(66,76,69)(67,73,70)(68,74,71)(81,123,99)(82,124,100)(83,121,97)(84,122,98)(85,129,90)(86,130,91)(87,131,92)(88,132,89)(101,109,106)(102,110,107)(103,111,108)(104,112,105), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,76,3,74)(2,75,4,73)(5,42,7,44)(6,41,8,43)(9,123,11,121)(10,122,12,124)(13,62,15,64)(14,61,16,63)(17,111,19,109)(18,110,20,112)(21,54,23,56)(22,53,24,55)(25,130,27,132)(26,129,28,131)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,65,39,67)(38,68,40,66)(49,80,51,78)(50,79,52,77)(57,95,59,93)(58,94,60,96)(81,128,83,126)(82,127,84,125)(85,116,87,114)(86,115,88,113)(89,120,91,118)(90,119,92,117)(97,135,99,133)(98,134,100,136)(101,137,103,139)(102,140,104,138)(105,141,107,143)(106,144,108,142), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,34,50)(6,35,51)(7,36,52)(8,33,49)(9,141,115)(10,142,116)(11,143,113)(12,144,114)(13,59,37)(14,60,38)(15,57,39)(16,58,40)(17,117,125)(18,118,126)(19,119,127)(20,120,128)(25,133,140)(26,134,137)(27,135,138)(28,136,139)(41,71,78)(42,72,79)(43,69,80)(44,70,77)(45,75,53)(46,76,54)(47,73,55)(48,74,56)(61,96,68)(62,93,65)(63,94,66)(64,95,67)(81,110,89)(82,111,90)(83,112,91)(84,109,92)(85,124,108)(86,121,105)(87,122,106)(88,123,107)(97,104,130)(98,101,131)(99,102,132)(100,103,129), (1,8,16)(2,5,13)(3,6,14)(4,7,15)(9,118,138)(10,119,139)(11,120,140)(12,117,137)(17,134,114)(18,135,115)(19,136,116)(20,133,113)(21,33,58)(22,34,59)(23,35,60)(24,36,57)(25,143,128)(26,144,125)(27,141,126)(28,142,127)(29,49,40)(30,50,37)(31,51,38)(32,52,39)(41,61,74)(42,62,75)(43,63,76)(44,64,73)(45,79,65)(46,80,66)(47,77,67)(48,78,68)(53,72,93)(54,69,94)(55,70,95)(56,71,96)(81,132,107)(82,129,108)(83,130,105)(84,131,106)(85,111,100)(86,112,97)(87,109,98)(88,110,99)(89,102,123)(90,103,124)(91,104,121)(92,101,122), (1,110)(2,111)(3,112)(4,109)(5,85)(6,86)(7,87)(8,88)(9,78)(10,79)(11,80)(12,77)(13,100)(14,97)(15,98)(16,99)(17,73)(18,74)(19,75)(20,76)(21,81)(22,82)(23,83)(24,84)(25,94)(26,95)(27,96)(28,93)(29,89)(30,90)(31,91)(32,92)(33,107)(34,108)(35,105)(36,106)(37,103)(38,104)(39,101)(40,102)(41,115)(42,116)(43,113)(44,114)(45,119)(46,120)(47,117)(48,118)(49,123)(50,124)(51,121)(52,122)(53,127)(54,128)(55,125)(56,126)(57,131)(58,132)(59,129)(60,130)(61,135)(62,136)(63,133)(64,134)(65,139)(66,140)(67,137)(68,138)(69,143)(70,144)(71,141)(72,142)>;

G:=Group( (1,33,40)(2,34,37)(3,35,38)(4,36,39)(5,59,30)(6,60,31)(7,57,32)(8,58,29)(9,135,126)(10,136,127)(11,133,128)(12,134,125)(13,22,50)(14,23,51)(15,24,52)(16,21,49)(17,144,137)(18,141,138)(19,142,139)(20,143,140)(25,120,113)(26,117,114)(27,118,115)(28,119,116)(41,96,48)(42,93,45)(43,94,46)(44,95,47)(53,79,62)(54,80,63)(55,77,64)(56,78,61)(65,75,72)(66,76,69)(67,73,70)(68,74,71)(81,123,99)(82,124,100)(83,121,97)(84,122,98)(85,129,90)(86,130,91)(87,131,92)(88,132,89)(101,109,106)(102,110,107)(103,111,108)(104,112,105), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,76,3,74)(2,75,4,73)(5,42,7,44)(6,41,8,43)(9,123,11,121)(10,122,12,124)(13,62,15,64)(14,61,16,63)(17,111,19,109)(18,110,20,112)(21,54,23,56)(22,53,24,55)(25,130,27,132)(26,129,28,131)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,65,39,67)(38,68,40,66)(49,80,51,78)(50,79,52,77)(57,95,59,93)(58,94,60,96)(81,128,83,126)(82,127,84,125)(85,116,87,114)(86,115,88,113)(89,120,91,118)(90,119,92,117)(97,135,99,133)(98,134,100,136)(101,137,103,139)(102,140,104,138)(105,141,107,143)(106,144,108,142), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,34,50)(6,35,51)(7,36,52)(8,33,49)(9,141,115)(10,142,116)(11,143,113)(12,144,114)(13,59,37)(14,60,38)(15,57,39)(16,58,40)(17,117,125)(18,118,126)(19,119,127)(20,120,128)(25,133,140)(26,134,137)(27,135,138)(28,136,139)(41,71,78)(42,72,79)(43,69,80)(44,70,77)(45,75,53)(46,76,54)(47,73,55)(48,74,56)(61,96,68)(62,93,65)(63,94,66)(64,95,67)(81,110,89)(82,111,90)(83,112,91)(84,109,92)(85,124,108)(86,121,105)(87,122,106)(88,123,107)(97,104,130)(98,101,131)(99,102,132)(100,103,129), (1,8,16)(2,5,13)(3,6,14)(4,7,15)(9,118,138)(10,119,139)(11,120,140)(12,117,137)(17,134,114)(18,135,115)(19,136,116)(20,133,113)(21,33,58)(22,34,59)(23,35,60)(24,36,57)(25,143,128)(26,144,125)(27,141,126)(28,142,127)(29,49,40)(30,50,37)(31,51,38)(32,52,39)(41,61,74)(42,62,75)(43,63,76)(44,64,73)(45,79,65)(46,80,66)(47,77,67)(48,78,68)(53,72,93)(54,69,94)(55,70,95)(56,71,96)(81,132,107)(82,129,108)(83,130,105)(84,131,106)(85,111,100)(86,112,97)(87,109,98)(88,110,99)(89,102,123)(90,103,124)(91,104,121)(92,101,122), (1,110)(2,111)(3,112)(4,109)(5,85)(6,86)(7,87)(8,88)(9,78)(10,79)(11,80)(12,77)(13,100)(14,97)(15,98)(16,99)(17,73)(18,74)(19,75)(20,76)(21,81)(22,82)(23,83)(24,84)(25,94)(26,95)(27,96)(28,93)(29,89)(30,90)(31,91)(32,92)(33,107)(34,108)(35,105)(36,106)(37,103)(38,104)(39,101)(40,102)(41,115)(42,116)(43,113)(44,114)(45,119)(46,120)(47,117)(48,118)(49,123)(50,124)(51,121)(52,122)(53,127)(54,128)(55,125)(56,126)(57,131)(58,132)(59,129)(60,130)(61,135)(62,136)(63,133)(64,134)(65,139)(66,140)(67,137)(68,138)(69,143)(70,144)(71,141)(72,142) );

G=PermutationGroup([[(1,33,40),(2,34,37),(3,35,38),(4,36,39),(5,59,30),(6,60,31),(7,57,32),(8,58,29),(9,135,126),(10,136,127),(11,133,128),(12,134,125),(13,22,50),(14,23,51),(15,24,52),(16,21,49),(17,144,137),(18,141,138),(19,142,139),(20,143,140),(25,120,113),(26,117,114),(27,118,115),(28,119,116),(41,96,48),(42,93,45),(43,94,46),(44,95,47),(53,79,62),(54,80,63),(55,77,64),(56,78,61),(65,75,72),(66,76,69),(67,73,70),(68,74,71),(81,123,99),(82,124,100),(83,121,97),(84,122,98),(85,129,90),(86,130,91),(87,131,92),(88,132,89),(101,109,106),(102,110,107),(103,111,108),(104,112,105)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,76,3,74),(2,75,4,73),(5,42,7,44),(6,41,8,43),(9,123,11,121),(10,122,12,124),(13,62,15,64),(14,61,16,63),(17,111,19,109),(18,110,20,112),(21,54,23,56),(22,53,24,55),(25,130,27,132),(26,129,28,131),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,65,39,67),(38,68,40,66),(49,80,51,78),(50,79,52,77),(57,95,59,93),(58,94,60,96),(81,128,83,126),(82,127,84,125),(85,116,87,114),(86,115,88,113),(89,120,91,118),(90,119,92,117),(97,135,99,133),(98,134,100,136),(101,137,103,139),(102,140,104,138),(105,141,107,143),(106,144,108,142)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,34,50),(6,35,51),(7,36,52),(8,33,49),(9,141,115),(10,142,116),(11,143,113),(12,144,114),(13,59,37),(14,60,38),(15,57,39),(16,58,40),(17,117,125),(18,118,126),(19,119,127),(20,120,128),(25,133,140),(26,134,137),(27,135,138),(28,136,139),(41,71,78),(42,72,79),(43,69,80),(44,70,77),(45,75,53),(46,76,54),(47,73,55),(48,74,56),(61,96,68),(62,93,65),(63,94,66),(64,95,67),(81,110,89),(82,111,90),(83,112,91),(84,109,92),(85,124,108),(86,121,105),(87,122,106),(88,123,107),(97,104,130),(98,101,131),(99,102,132),(100,103,129)], [(1,8,16),(2,5,13),(3,6,14),(4,7,15),(9,118,138),(10,119,139),(11,120,140),(12,117,137),(17,134,114),(18,135,115),(19,136,116),(20,133,113),(21,33,58),(22,34,59),(23,35,60),(24,36,57),(25,143,128),(26,144,125),(27,141,126),(28,142,127),(29,49,40),(30,50,37),(31,51,38),(32,52,39),(41,61,74),(42,62,75),(43,63,76),(44,64,73),(45,79,65),(46,80,66),(47,77,67),(48,78,68),(53,72,93),(54,69,94),(55,70,95),(56,71,96),(81,132,107),(82,129,108),(83,130,105),(84,131,106),(85,111,100),(86,112,97),(87,109,98),(88,110,99),(89,102,123),(90,103,124),(91,104,121),(92,101,122)], [(1,110),(2,111),(3,112),(4,109),(5,85),(6,86),(7,87),(8,88),(9,78),(10,79),(11,80),(12,77),(13,100),(14,97),(15,98),(16,99),(17,73),(18,74),(19,75),(20,76),(21,81),(22,82),(23,83),(24,84),(25,94),(26,95),(27,96),(28,93),(29,89),(30,90),(31,91),(32,92),(33,107),(34,108),(35,105),(36,106),(37,103),(38,104),(39,101),(40,102),(41,115),(42,116),(43,113),(44,114),(45,119),(46,120),(47,117),(48,118),(49,123),(50,124),(51,121),(52,122),(53,127),(54,128),(55,125),(56,126),(57,131),(58,132),(59,129),(60,130),(61,135),(62,136),(63,133),(64,134),(65,139),(66,140),(67,137),(68,138),(69,143),(70,144),(71,141),(72,142)]])

90 conjugacy classes

class 1 2A2B2C3A3B3C···3N4A4B4C4D4E4F6A6B6C···6N6O6P6Q6R12A···12F12G···12AP12AQ···12AV
order1222333···3444444666···6666612···1212···1212···12
size1199112···2222181818112···299992···24···418···18

90 irreducible representations

dim1111111122222244
type+++++-+-
imageC1C2C2C2C3C6C6C6S3Q8D6C3×S3C3×Q8S3×C6S3×Q8C3×S3×Q8
kernelC3×Q8×C3⋊S3C3×C324Q8C12×C3⋊S3Q8×C33Q8×C3⋊S3C324Q8C4×C3⋊S3Q8×C32Q8×C32C3×C3⋊S3C3×C12C3×Q8C3⋊S3C12C32C3
# reps133126624212842448

Matrix representation of C3×Q8×C3⋊S3 in GL6(𝔽13)

100000
010000
009000
000900
000010
000001
,
100000
010000
0012000
0001200
0000810
000005
,
1200000
0120000
001000
000100
000031
0000310
,
900000
1030000
009000
000300
000010
000001
,
300000
390000
001000
000100
000010
000001
,
360000
3100000
000100
001000
000010
000001

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,10,5],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,3,0,0,0,0,1,10],[9,10,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,3,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,3,0,0,0,0,6,10,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C3×Q8×C3⋊S3 in GAP, Magma, Sage, TeX

C_3\times Q_8\times C_3\rtimes S_3
% in TeX

G:=Group("C3xQ8xC3:S3");
// GroupNames label

G:=SmallGroup(432,716);
// by ID

G=gap.SmallGroup(432,716);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,303,142,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^4=d^3=e^3=f^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽