Extensions 1→N→G→Q→1 with N=C9×C3⋊D4 and Q=C2

Direct product G=N×Q with N=C9×C3⋊D4 and Q=C2
dρLabelID
C18×C3⋊D472C18xC3:D4432,375

Semidirect products G=N:Q with N=C9×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×C3⋊D4)⋊1C2 = Dic3.D18φ: C2/C1C2 ⊆ Out C9×C3⋊D4724(C9xC3:D4):1C2432,309
(C9×C3⋊D4)⋊2C2 = D18.4D6φ: C2/C1C2 ⊆ Out C9×C3⋊D4724-(C9xC3:D4):2C2432,310
(C9×C3⋊D4)⋊3C2 = D9×C3⋊D4φ: C2/C1C2 ⊆ Out C9×C3⋊D4724(C9xC3:D4):3C2432,314
(C9×C3⋊D4)⋊4C2 = D18⋊D6φ: C2/C1C2 ⊆ Out C9×C3⋊D4364+(C9xC3:D4):4C2432,315
(C9×C3⋊D4)⋊5C2 = S3×D4×C9φ: C2/C1C2 ⊆ Out C9×C3⋊D4724(C9xC3:D4):5C2432,358
(C9×C3⋊D4)⋊6C2 = C9×D42S3φ: C2/C1C2 ⊆ Out C9×C3⋊D4724(C9xC3:D4):6C2432,359
(C9×C3⋊D4)⋊7C2 = C9×C4○D12φ: trivial image722(C9xC3:D4):7C2432,347


׿
×
𝔽