Copied to
clipboard

G = Dic3.D18order 432 = 24·33

5th non-split extension by Dic3 of D18 acting via D18/D9=C2

metabelian, supersoluble, monomial

Aliases: D6.3D18, C62.66D6, Dic9.12D6, Dic3.5D18, C3⋊D43D9, (S3×C6).5D6, (C2×C18).4D6, C9⋊D124C2, C94(C4○D12), (C6×Dic9)⋊7C2, (S3×Dic9)⋊3C2, (C2×Dic9)⋊3S3, (C2×C6).20D18, C33(D42D9), C22.1(S3×D9), C9⋊Dic65C2, C18.D62C2, (C3×Dic3).5D6, C6.21(C22×D9), C6.D182C2, (S3×C18).3C22, C18.21(C22×S3), (C3×C18).21C23, (C6×C18).15C22, C9⋊Dic3.6C22, C3.2(D6.3D6), (C9×Dic3).5C22, C32.4(D42S3), (C3×Dic9).12C22, (C2×C6).4S32, C6.40(C2×S32), C2.21(C2×S3×D9), (C3×C9)⋊9(C4○D4), (C9×C3⋊D4)⋊1C2, (C3×C3⋊D4).1S3, (C2×C9⋊S3).4C22, (C3×C6).89(C22×S3), SmallGroup(432,309)

Series: Derived Chief Lower central Upper central

C1C3×C18 — Dic3.D18
C1C3C32C3×C9C3×C18S3×C18S3×Dic9 — Dic3.D18
C3×C9C3×C18 — Dic3.D18
C1C2C22

Generators and relations for Dic3.D18
 G = < a,b,c,d | a6=c18=1, b2=d2=a3, bab-1=cac-1=dad-1=a-1, cbc-1=dbd-1=a3b, dcd-1=c-1 >

Subgroups: 828 in 136 conjugacy classes, 41 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, Q8, C9, C9, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C4○D4, D9, C18, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C3×C9, Dic9, Dic9, C36, D18, C2×C18, C2×C18, C3×Dic3, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C62, C4○D12, D42S3, S3×C9, C9⋊S3, C3×C18, C3×C18, Dic18, C4×D9, C2×Dic9, C2×Dic9, C9⋊D4, D4×C9, S3×Dic3, C6.D6, C3⋊D12, C322Q8, C6×Dic3, C3×C3⋊D4, C327D4, C3×Dic9, C9×Dic3, C9⋊Dic3, S3×C18, C2×C9⋊S3, C6×C18, D42D9, D6.3D6, C9⋊Dic6, C18.D6, S3×Dic9, C9⋊D12, C6×Dic9, C9×C3⋊D4, C6.D18, Dic3.D18
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, D18, S32, C4○D12, D42S3, C22×D9, C2×S32, S3×D9, D42D9, D6.3D6, C2×S3×D9, Dic3.D18

Smallest permutation representation of Dic3.D18
On 72 points
Generators in S72
(1 34 7 22 13 28)(2 29 14 23 8 35)(3 36 9 24 15 30)(4 31 16 25 10 19)(5 20 11 26 17 32)(6 33 18 27 12 21)(37 64 49 58 43 70)(38 71 44 59 50 65)(39 66 51 60 45 72)(40 55 46 61 52 67)(41 68 53 62 47 56)(42 57 48 63 54 69)
(1 31 22 10)(2 11 23 32)(3 33 24 12)(4 13 25 34)(5 35 26 14)(6 15 27 36)(7 19 28 16)(8 17 29 20)(9 21 30 18)(37 67 58 46)(38 47 59 68)(39 69 60 48)(40 49 61 70)(41 71 62 50)(42 51 63 72)(43 55 64 52)(44 53 65 56)(45 57 66 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 63 22 42)(2 62 23 41)(3 61 24 40)(4 60 25 39)(5 59 26 38)(6 58 27 37)(7 57 28 54)(8 56 29 53)(9 55 30 52)(10 72 31 51)(11 71 32 50)(12 70 33 49)(13 69 34 48)(14 68 35 47)(15 67 36 46)(16 66 19 45)(17 65 20 44)(18 64 21 43)

G:=sub<Sym(72)| (1,34,7,22,13,28)(2,29,14,23,8,35)(3,36,9,24,15,30)(4,31,16,25,10,19)(5,20,11,26,17,32)(6,33,18,27,12,21)(37,64,49,58,43,70)(38,71,44,59,50,65)(39,66,51,60,45,72)(40,55,46,61,52,67)(41,68,53,62,47,56)(42,57,48,63,54,69), (1,31,22,10)(2,11,23,32)(3,33,24,12)(4,13,25,34)(5,35,26,14)(6,15,27,36)(7,19,28,16)(8,17,29,20)(9,21,30,18)(37,67,58,46)(38,47,59,68)(39,69,60,48)(40,49,61,70)(41,71,62,50)(42,51,63,72)(43,55,64,52)(44,53,65,56)(45,57,66,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,63,22,42)(2,62,23,41)(3,61,24,40)(4,60,25,39)(5,59,26,38)(6,58,27,37)(7,57,28,54)(8,56,29,53)(9,55,30,52)(10,72,31,51)(11,71,32,50)(12,70,33,49)(13,69,34,48)(14,68,35,47)(15,67,36,46)(16,66,19,45)(17,65,20,44)(18,64,21,43)>;

G:=Group( (1,34,7,22,13,28)(2,29,14,23,8,35)(3,36,9,24,15,30)(4,31,16,25,10,19)(5,20,11,26,17,32)(6,33,18,27,12,21)(37,64,49,58,43,70)(38,71,44,59,50,65)(39,66,51,60,45,72)(40,55,46,61,52,67)(41,68,53,62,47,56)(42,57,48,63,54,69), (1,31,22,10)(2,11,23,32)(3,33,24,12)(4,13,25,34)(5,35,26,14)(6,15,27,36)(7,19,28,16)(8,17,29,20)(9,21,30,18)(37,67,58,46)(38,47,59,68)(39,69,60,48)(40,49,61,70)(41,71,62,50)(42,51,63,72)(43,55,64,52)(44,53,65,56)(45,57,66,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,63,22,42)(2,62,23,41)(3,61,24,40)(4,60,25,39)(5,59,26,38)(6,58,27,37)(7,57,28,54)(8,56,29,53)(9,55,30,52)(10,72,31,51)(11,71,32,50)(12,70,33,49)(13,69,34,48)(14,68,35,47)(15,67,36,46)(16,66,19,45)(17,65,20,44)(18,64,21,43) );

G=PermutationGroup([[(1,34,7,22,13,28),(2,29,14,23,8,35),(3,36,9,24,15,30),(4,31,16,25,10,19),(5,20,11,26,17,32),(6,33,18,27,12,21),(37,64,49,58,43,70),(38,71,44,59,50,65),(39,66,51,60,45,72),(40,55,46,61,52,67),(41,68,53,62,47,56),(42,57,48,63,54,69)], [(1,31,22,10),(2,11,23,32),(3,33,24,12),(4,13,25,34),(5,35,26,14),(6,15,27,36),(7,19,28,16),(8,17,29,20),(9,21,30,18),(37,67,58,46),(38,47,59,68),(39,69,60,48),(40,49,61,70),(41,71,62,50),(42,51,63,72),(43,55,64,52),(44,53,65,56),(45,57,66,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,63,22,42),(2,62,23,41),(3,61,24,40),(4,60,25,39),(5,59,26,38),(6,58,27,37),(7,57,28,54),(8,56,29,53),(9,55,30,52),(10,72,31,51),(11,71,32,50),(12,70,33,49),(13,69,34,48),(14,68,35,47),(15,67,36,46),(16,66,19,45),(17,65,20,44),(18,64,21,43)]])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H6I9A9B9C9D9E9F12A12B12C12D12E18A18B18C18D···18O18P18Q18R36A36B36C
order1222233344444666666666999999121212121218181818···18181818363636
size1126542246991854222244441222244412181818182224···4121212121212

54 irreducible representations

dim11111111222222222222244444444
type++++++++++++++++++++-++-+
imageC1C2C2C2C2C2C2C2S3S3D6D6D6D6D6C4○D4D9D18D18D18C4○D12S32D42S3C2×S32S3×D9D42D9D6.3D6C2×S3×D9Dic3.D18
kernelDic3.D18C9⋊Dic6C18.D6S3×Dic9C9⋊D12C6×Dic9C9×C3⋊D4C6.D18C2×Dic9C3×C3⋊D4Dic9C2×C18C3×Dic3S3×C6C62C3×C9C3⋊D4Dic3D6C2×C6C9C2×C6C32C6C22C3C3C2C1
# reps11111111112111123333411133236

Matrix representation of Dic3.D18 in GL4(𝔽37) generated by

27000
331100
0010
0001
,
29500
24800
0010
0001
,
29500
17800
00120
00034
,
263000
281100
00034
00120
G:=sub<GL(4,GF(37))| [27,33,0,0,0,11,0,0,0,0,1,0,0,0,0,1],[29,24,0,0,5,8,0,0,0,0,1,0,0,0,0,1],[29,17,0,0,5,8,0,0,0,0,12,0,0,0,0,34],[26,28,0,0,30,11,0,0,0,0,0,12,0,0,34,0] >;

Dic3.D18 in GAP, Magma, Sage, TeX

{\rm Dic}_3.D_{18}
% in TeX

G:=Group("Dic3.D18");
// GroupNames label

G:=SmallGroup(432,309);
// by ID

G=gap.SmallGroup(432,309);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^18=1,b^2=d^2=a^3,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽