Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C54

Direct product G=N×Q with N=C4 and Q=C2×C54
dρLabelID
C22×C108432C2^2xC108432,53

Semidirect products G=N:Q with N=C4 and Q=C2×C54
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C54) = D4×C54φ: C2×C54/C54C2 ⊆ Aut C4216C4:(C2xC54)432,54

Non-split extensions G=N.Q with N=C4 and Q=C2×C54
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C54) = D8×C27φ: C2×C54/C54C2 ⊆ Aut C42162C4.1(C2xC54)432,25
C4.2(C2×C54) = SD16×C27φ: C2×C54/C54C2 ⊆ Aut C42162C4.2(C2xC54)432,26
C4.3(C2×C54) = Q16×C27φ: C2×C54/C54C2 ⊆ Aut C44322C4.3(C2xC54)432,27
C4.4(C2×C54) = Q8×C54φ: C2×C54/C54C2 ⊆ Aut C4432C4.4(C2xC54)432,55
C4.5(C2×C54) = M4(2)×C27central extension (φ=1)2162C4.5(C2xC54)432,24
C4.6(C2×C54) = C4○D4×C27central extension (φ=1)2162C4.6(C2xC54)432,56

׿
×
𝔽