extension | φ:Q→Aut N | d | ρ | Label | ID |
C24.1(C3×C6) = C32×Dic12 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 144 | | C24.1(C3xC6) | 432,468 |
C24.2(C3×C6) = D8×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 216 | | C24.2(C3xC6) | 432,215 |
C24.3(C3×C6) = D8×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.3(C3xC6) | 432,216 |
C24.4(C3×C6) = D8×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.4(C3xC6) | 432,217 |
C24.5(C3×C6) = Q16×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 432 | | C24.5(C3xC6) | 432,221 |
C24.6(C3×C6) = Q16×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 144 | 6 | C24.6(C3xC6) | 432,222 |
C24.7(C3×C6) = Q16×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 144 | 6 | C24.7(C3xC6) | 432,223 |
C24.8(C3×C6) = Q16×C33 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 432 | | C24.8(C3xC6) | 432,519 |
C24.9(C3×C6) = C32×C3⋊C16 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 144 | | C24.9(C3xC6) | 432,229 |
C24.10(C3×C6) = SD16×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 216 | | C24.10(C3xC6) | 432,218 |
C24.11(C3×C6) = SD16×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.11(C3xC6) | 432,219 |
C24.12(C3×C6) = SD16×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.12(C3xC6) | 432,220 |
C24.13(C3×C6) = M4(2)×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 216 | | C24.13(C3xC6) | 432,212 |
C24.14(C3×C6) = M4(2)×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.14(C3xC6) | 432,213 |
C24.15(C3×C6) = M4(2)×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.15(C3xC6) | 432,214 |
C24.16(C3×C6) = C16×He3 | central extension (φ=1) | 144 | 3 | C24.16(C3xC6) | 432,35 |
C24.17(C3×C6) = C16×3- 1+2 | central extension (φ=1) | 144 | 3 | C24.17(C3xC6) | 432,36 |
C24.18(C3×C6) = C2×C8×He3 | central extension (φ=1) | 144 | | C24.18(C3xC6) | 432,210 |
C24.19(C3×C6) = C2×C8×3- 1+2 | central extension (φ=1) | 144 | | C24.19(C3xC6) | 432,211 |