direct product, metacyclic, nilpotent (class 3), monomial
Aliases: D8×3- 1+2, C72⋊5C6, C12.19C62, (C9×D8)⋊C3, C9⋊3(C3×D8), (D4×C9)⋊4C6, C32.(C3×D8), (C3×C24).2C6, C24.4(C3×C6), (C32×D8).C3, C36.17(C2×C6), C18.14(C3×D4), C3.3(C32×D8), (D4×C32).2C6, (C3×D8).3C32, C6.30(D4×C32), D4⋊(C2×3- 1+2), C8⋊1(C2×3- 1+2), (D4×3- 1+2)⋊4C2, (C8×3- 1+2)⋊5C2, C2.3(D4×3- 1+2), (C2×3- 1+2).14D4, C4.1(C22×3- 1+2), (C4×3- 1+2).17C22, (C3×D4).4(C3×C6), (C3×C6).33(C3×D4), (C3×C12).18(C2×C6), SmallGroup(432,217)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C6 — C12 — C3×C12 — C4×3- 1+2 — D4×3- 1+2 — D8×3- 1+2 |
C1 — C6 — C4×3- 1+2 — D8×3- 1+2 |
Generators and relations for D8×3- 1+2
G = < a,b,c,d | a8=b2=c9=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Subgroups: 190 in 88 conjugacy classes, 49 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, D4, C9, C32, C12, C12, C2×C6, D8, C18, C18, C3×C6, C3×C6, C24, C24, C3×D4, C3×D4, 3- 1+2, C36, C2×C18, C3×C12, C62, C3×D8, C3×D8, C2×3- 1+2, C2×3- 1+2, C72, D4×C9, C3×C24, D4×C32, C4×3- 1+2, C22×3- 1+2, C9×D8, C32×D8, C8×3- 1+2, D4×3- 1+2, D8×3- 1+2
Quotients: C1, C2, C3, C22, C6, D4, C32, C2×C6, D8, C3×C6, C3×D4, 3- 1+2, C62, C3×D8, C2×3- 1+2, D4×C32, C22×3- 1+2, C32×D8, D4×3- 1+2, D8×3- 1+2
(1 21 51 15 42 66 63 31)(2 22 52 16 43 67 55 32)(3 23 53 17 44 68 56 33)(4 24 54 18 45 69 57 34)(5 25 46 10 37 70 58 35)(6 26 47 11 38 71 59 36)(7 27 48 12 39 72 60 28)(8 19 49 13 40 64 61 29)(9 20 50 14 41 65 62 30)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 28)(8 29)(9 30)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 61)(20 62)(21 63)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(46 70)(47 71)(48 72)(49 64)(50 65)(51 66)(52 67)(53 68)(54 69)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(29 35 32)(30 33 36)(37 43 40)(38 41 44)(46 52 49)(47 50 53)(55 61 58)(56 59 62)(64 70 67)(65 68 71)
G:=sub<Sym(72)| (1,21,51,15,42,66,63,31)(2,22,52,16,43,67,55,32)(3,23,53,17,44,68,56,33)(4,24,54,18,45,69,57,34)(5,25,46,10,37,70,58,35)(6,26,47,11,38,71,59,36)(7,27,48,12,39,72,60,28)(8,19,49,13,40,64,61,29)(9,20,50,14,41,65,62,30), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,61)(20,62)(21,63)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(46,70)(47,71)(48,72)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(37,43,40)(38,41,44)(46,52,49)(47,50,53)(55,61,58)(56,59,62)(64,70,67)(65,68,71)>;
G:=Group( (1,21,51,15,42,66,63,31)(2,22,52,16,43,67,55,32)(3,23,53,17,44,68,56,33)(4,24,54,18,45,69,57,34)(5,25,46,10,37,70,58,35)(6,26,47,11,38,71,59,36)(7,27,48,12,39,72,60,28)(8,19,49,13,40,64,61,29)(9,20,50,14,41,65,62,30), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,61)(20,62)(21,63)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(46,70)(47,71)(48,72)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(37,43,40)(38,41,44)(46,52,49)(47,50,53)(55,61,58)(56,59,62)(64,70,67)(65,68,71) );
G=PermutationGroup([[(1,21,51,15,42,66,63,31),(2,22,52,16,43,67,55,32),(3,23,53,17,44,68,56,33),(4,24,54,18,45,69,57,34),(5,25,46,10,37,70,58,35),(6,26,47,11,38,71,59,36),(7,27,48,12,39,72,60,28),(8,19,49,13,40,64,61,29),(9,20,50,14,41,65,62,30)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,28),(8,29),(9,30),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,61),(20,62),(21,63),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(46,70),(47,71),(48,72),(49,64),(50,65),(51,66),(52,67),(53,68),(54,69)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(29,35,32),(30,33,36),(37,43,40),(38,41,44),(46,52,49),(47,50,53),(55,61,58),(56,59,62),(64,70,67),(65,68,71)]])
77 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 9A | ··· | 9F | 12A | 12B | 12C | 12D | 18A | ··· | 18F | 18G | ··· | 18R | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | 36A | ··· | 36F | 72A | ··· | 72L |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 4 | 4 | 1 | 1 | 3 | 3 | 2 | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 3 | ··· | 3 | 2 | 2 | 6 | 6 | 3 | ··· | 3 | 12 | ··· | 12 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
77 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | |||||||||||||||
image | C1 | C2 | C2 | C3 | C3 | C6 | C6 | C6 | C6 | D4 | D8 | C3×D4 | C3×D4 | C3×D8 | C3×D8 | 3- 1+2 | C2×3- 1+2 | C2×3- 1+2 | D4×3- 1+2 | D8×3- 1+2 |
kernel | D8×3- 1+2 | C8×3- 1+2 | D4×3- 1+2 | C9×D8 | C32×D8 | C72 | D4×C9 | C3×C24 | D4×C32 | C2×3- 1+2 | 3- 1+2 | C18 | C3×C6 | C9 | C32 | D8 | C8 | D4 | C2 | C1 |
# reps | 1 | 1 | 2 | 6 | 2 | 6 | 12 | 2 | 4 | 1 | 2 | 6 | 2 | 12 | 4 | 2 | 2 | 4 | 2 | 4 |
Matrix representation of D8×3- 1+2 ►in GL5(𝔽73)
57 | 16 | 0 | 0 | 0 |
57 | 57 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
57 | 16 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 63 | 0 |
0 | 0 | 64 | 65 | 64 |
0 | 0 | 0 | 9 | 0 |
64 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 8 | 64 | 0 |
0 | 0 | 72 | 0 | 8 |
G:=sub<GL(5,GF(73))| [57,57,0,0,0,16,57,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[57,16,0,0,0,16,16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[8,0,0,0,0,0,8,0,0,0,0,0,8,64,0,0,0,63,65,9,0,0,0,64,0],[64,0,0,0,0,0,64,0,0,0,0,0,1,8,72,0,0,0,64,0,0,0,0,0,8] >;
D8×3- 1+2 in GAP, Magma, Sage, TeX
D_8\times 3_-^{1+2}
% in TeX
G:=Group("D8xES-(3,1)");
// GroupNames label
G:=SmallGroup(432,217);
// by ID
G=gap.SmallGroup(432,217);
# by ID
G:=PCGroup([7,-2,-2,-3,-3,-2,-3,-2,533,394,605,8824,4421,242]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^9=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations