Extensions 1→N→G→Q→1 with N=C2×C18 and Q=A4

Direct product G=N×Q with N=C2×C18 and Q=A4

Semidirect products G=N:Q with N=C2×C18 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C2×C18)⋊1A4 = C9×C22⋊A4φ: A4/C22C3 ⊆ Aut C2×C18108(C2xC18):1A4432,551
(C2×C18)⋊2A4 = C2443- 1+2φ: A4/C22C3 ⊆ Aut C2×C18108(C2xC18):2A4432,552
(C2×C18)⋊3A4 = C22×C9⋊A4φ: A4/C22C3 ⊆ Aut C2×C18108(C2xC18):3A4432,547

Non-split extensions G=N.Q with N=C2×C18 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C2×C18).1A4 = C42⋊C27φ: A4/C22C3 ⊆ Aut C2×C181083(C2xC18).1A4432,3
(C2×C18).2A4 = C9×C42⋊C3φ: A4/C22C3 ⊆ Aut C2×C181083(C2xC18).2A4432,99
(C2×C18).3A4 = C42⋊3- 1+2φ: A4/C22C3 ⊆ Aut C2×C181083(C2xC18).3A4432,100
(C2×C18).4A4 = C24⋊C27φ: A4/C22C3 ⊆ Aut C2×C18108(C2xC18).4A4432,226
(C2×C18).5A4 = C2×C18.A4φ: A4/C22C3 ⊆ Aut C2×C18144(C2xC18).5A4432,328
(C2×C18).6A4 = C2×Q8⋊C27central extension (φ=1)432(C2xC18).6A4432,41
(C2×C18).7A4 = C22×C9.A4central extension (φ=1)108(C2xC18).7A4432,225
(C2×C18).8A4 = C18×SL2(𝔽3)central extension (φ=1)144(C2xC18).8A4432,327