Extensions 1→N→G→Q→1 with N=C2×Dic27 and Q=C2

Direct product G=N×Q with N=C2×Dic27 and Q=C2

Semidirect products G=N:Q with N=C2×Dic27 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic27)⋊1C2 = D54⋊C4φ: C2/C1C2 ⊆ Out C2×Dic27216(C2xDic27):1C2432,14
(C2×Dic27)⋊2C2 = C54.D4φ: C2/C1C2 ⊆ Out C2×Dic27216(C2xDic27):2C2432,19
(C2×Dic27)⋊3C2 = D42D27φ: C2/C1C2 ⊆ Out C2×Dic272164-(C2xDic27):3C2432,48
(C2×Dic27)⋊4C2 = C2×C27⋊D4φ: C2/C1C2 ⊆ Out C2×Dic27216(C2xDic27):4C2432,52
(C2×Dic27)⋊5C2 = C2×C4×D27φ: trivial image216(C2xDic27):5C2432,44

Non-split extensions G=N.Q with N=C2×Dic27 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic27).1C2 = Dic27⋊C4φ: C2/C1C2 ⊆ Out C2×Dic27432(C2xDic27).1C2432,12
(C2×Dic27).2C2 = C4⋊Dic27φ: C2/C1C2 ⊆ Out C2×Dic27432(C2xDic27).2C2432,13
(C2×Dic27).3C2 = C2×Dic54φ: C2/C1C2 ⊆ Out C2×Dic27432(C2xDic27).3C2432,43
(C2×Dic27).4C2 = C4×Dic27φ: trivial image432(C2xDic27).4C2432,11