Copied to
clipboard

G = D42D27order 432 = 24·33

The semidirect product of D4 and D27 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D42D27, C36.6D6, C4.5D54, C12.6D18, Dic543C2, C54.6C23, C22.1D54, C108.5C22, D54.2C22, Dic27.3C22, (D4×C27)⋊3C2, (C4×D27)⋊2C2, C272(C4○D4), C27⋊D42C2, (C3×D4).4D9, (D4×C9).4S3, (C2×C18).3D6, (C2×C6).3D18, (C2×C54).C22, C9.(D42S3), C3.(D42D9), (C2×Dic27)⋊3C2, C6.33(C22×D9), C2.7(C22×D27), C18.33(C22×S3), SmallGroup(432,48)

Series: Derived Chief Lower central Upper central

C1C54 — D42D27
C1C3C9C27C54D54C4×D27 — D42D27
C27C54 — D42D27
C1C2D4

Generators and relations for D42D27
 G = < a,b,c,d | a4=b2=c27=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 560 in 80 conjugacy classes, 35 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, D4, Q8, C9, Dic3, C12, D6, C2×C6, C4○D4, D9, C18, C18, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C27, Dic9, C36, D18, C2×C18, D42S3, D27, C54, C54, Dic18, C4×D9, C2×Dic9, C9⋊D4, D4×C9, Dic27, Dic27, C108, D54, C2×C54, D42D9, Dic54, C4×D27, C2×Dic27, C27⋊D4, D4×C27, D42D27
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, D18, D42S3, D27, C22×D9, D54, D42D9, C22×D27, D42D27

Smallest permutation representation of D42D27
On 216 points
Generators in S216
(1 55 54 96)(2 56 28 97)(3 57 29 98)(4 58 30 99)(5 59 31 100)(6 60 32 101)(7 61 33 102)(8 62 34 103)(9 63 35 104)(10 64 36 105)(11 65 37 106)(12 66 38 107)(13 67 39 108)(14 68 40 82)(15 69 41 83)(16 70 42 84)(17 71 43 85)(18 72 44 86)(19 73 45 87)(20 74 46 88)(21 75 47 89)(22 76 48 90)(23 77 49 91)(24 78 50 92)(25 79 51 93)(26 80 52 94)(27 81 53 95)(109 163 144 206)(110 164 145 207)(111 165 146 208)(112 166 147 209)(113 167 148 210)(114 168 149 211)(115 169 150 212)(116 170 151 213)(117 171 152 214)(118 172 153 215)(119 173 154 216)(120 174 155 190)(121 175 156 191)(122 176 157 192)(123 177 158 193)(124 178 159 194)(125 179 160 195)(126 180 161 196)(127 181 162 197)(128 182 136 198)(129 183 137 199)(130 184 138 200)(131 185 139 201)(132 186 140 202)(133 187 141 203)(134 188 142 204)(135 189 143 205)
(55 96)(56 97)(57 98)(58 99)(59 100)(60 101)(61 102)(62 103)(63 104)(64 105)(65 106)(66 107)(67 108)(68 82)(69 83)(70 84)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)(81 95)(109 144)(110 145)(111 146)(112 147)(113 148)(114 149)(115 150)(116 151)(117 152)(118 153)(119 154)(120 155)(121 156)(122 157)(123 158)(124 159)(125 160)(126 161)(127 162)(128 136)(129 137)(130 138)(131 139)(132 140)(133 141)(134 142)(135 143)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162)(163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189)(190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216)
(1 112)(2 111)(3 110)(4 109)(5 135)(6 134)(7 133)(8 132)(9 131)(10 130)(11 129)(12 128)(13 127)(14 126)(15 125)(16 124)(17 123)(18 122)(19 121)(20 120)(21 119)(22 118)(23 117)(24 116)(25 115)(26 114)(27 113)(28 146)(29 145)(30 144)(31 143)(32 142)(33 141)(34 140)(35 139)(36 138)(37 137)(38 136)(39 162)(40 161)(41 160)(42 159)(43 158)(44 157)(45 156)(46 155)(47 154)(48 153)(49 152)(50 151)(51 150)(52 149)(53 148)(54 147)(55 166)(56 165)(57 164)(58 163)(59 189)(60 188)(61 187)(62 186)(63 185)(64 184)(65 183)(66 182)(67 181)(68 180)(69 179)(70 178)(71 177)(72 176)(73 175)(74 174)(75 173)(76 172)(77 171)(78 170)(79 169)(80 168)(81 167)(82 196)(83 195)(84 194)(85 193)(86 192)(87 191)(88 190)(89 216)(90 215)(91 214)(92 213)(93 212)(94 211)(95 210)(96 209)(97 208)(98 207)(99 206)(100 205)(101 204)(102 203)(103 202)(104 201)(105 200)(106 199)(107 198)(108 197)

G:=sub<Sym(216)| (1,55,54,96)(2,56,28,97)(3,57,29,98)(4,58,30,99)(5,59,31,100)(6,60,32,101)(7,61,33,102)(8,62,34,103)(9,63,35,104)(10,64,36,105)(11,65,37,106)(12,66,38,107)(13,67,39,108)(14,68,40,82)(15,69,41,83)(16,70,42,84)(17,71,43,85)(18,72,44,86)(19,73,45,87)(20,74,46,88)(21,75,47,89)(22,76,48,90)(23,77,49,91)(24,78,50,92)(25,79,51,93)(26,80,52,94)(27,81,53,95)(109,163,144,206)(110,164,145,207)(111,165,146,208)(112,166,147,209)(113,167,148,210)(114,168,149,211)(115,169,150,212)(116,170,151,213)(117,171,152,214)(118,172,153,215)(119,173,154,216)(120,174,155,190)(121,175,156,191)(122,176,157,192)(123,177,158,193)(124,178,159,194)(125,179,160,195)(126,180,161,196)(127,181,162,197)(128,182,136,198)(129,183,137,199)(130,184,138,200)(131,185,139,201)(132,186,140,202)(133,187,141,203)(134,188,142,204)(135,189,143,205), (55,96)(56,97)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,82)(69,83)(70,84)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(109,144)(110,145)(111,146)(112,147)(113,148)(114,149)(115,150)(116,151)(117,152)(118,153)(119,154)(120,155)(121,156)(122,157)(123,158)(124,159)(125,160)(126,161)(127,162)(128,136)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162)(163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189)(190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,112)(2,111)(3,110)(4,109)(5,135)(6,134)(7,133)(8,132)(9,131)(10,130)(11,129)(12,128)(13,127)(14,126)(15,125)(16,124)(17,123)(18,122)(19,121)(20,120)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,146)(29,145)(30,144)(31,143)(32,142)(33,141)(34,140)(35,139)(36,138)(37,137)(38,136)(39,162)(40,161)(41,160)(42,159)(43,158)(44,157)(45,156)(46,155)(47,154)(48,153)(49,152)(50,151)(51,150)(52,149)(53,148)(54,147)(55,166)(56,165)(57,164)(58,163)(59,189)(60,188)(61,187)(62,186)(63,185)(64,184)(65,183)(66,182)(67,181)(68,180)(69,179)(70,178)(71,177)(72,176)(73,175)(74,174)(75,173)(76,172)(77,171)(78,170)(79,169)(80,168)(81,167)(82,196)(83,195)(84,194)(85,193)(86,192)(87,191)(88,190)(89,216)(90,215)(91,214)(92,213)(93,212)(94,211)(95,210)(96,209)(97,208)(98,207)(99,206)(100,205)(101,204)(102,203)(103,202)(104,201)(105,200)(106,199)(107,198)(108,197)>;

G:=Group( (1,55,54,96)(2,56,28,97)(3,57,29,98)(4,58,30,99)(5,59,31,100)(6,60,32,101)(7,61,33,102)(8,62,34,103)(9,63,35,104)(10,64,36,105)(11,65,37,106)(12,66,38,107)(13,67,39,108)(14,68,40,82)(15,69,41,83)(16,70,42,84)(17,71,43,85)(18,72,44,86)(19,73,45,87)(20,74,46,88)(21,75,47,89)(22,76,48,90)(23,77,49,91)(24,78,50,92)(25,79,51,93)(26,80,52,94)(27,81,53,95)(109,163,144,206)(110,164,145,207)(111,165,146,208)(112,166,147,209)(113,167,148,210)(114,168,149,211)(115,169,150,212)(116,170,151,213)(117,171,152,214)(118,172,153,215)(119,173,154,216)(120,174,155,190)(121,175,156,191)(122,176,157,192)(123,177,158,193)(124,178,159,194)(125,179,160,195)(126,180,161,196)(127,181,162,197)(128,182,136,198)(129,183,137,199)(130,184,138,200)(131,185,139,201)(132,186,140,202)(133,187,141,203)(134,188,142,204)(135,189,143,205), (55,96)(56,97)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,82)(69,83)(70,84)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(109,144)(110,145)(111,146)(112,147)(113,148)(114,149)(115,150)(116,151)(117,152)(118,153)(119,154)(120,155)(121,156)(122,157)(123,158)(124,159)(125,160)(126,161)(127,162)(128,136)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162)(163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189)(190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,112)(2,111)(3,110)(4,109)(5,135)(6,134)(7,133)(8,132)(9,131)(10,130)(11,129)(12,128)(13,127)(14,126)(15,125)(16,124)(17,123)(18,122)(19,121)(20,120)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,146)(29,145)(30,144)(31,143)(32,142)(33,141)(34,140)(35,139)(36,138)(37,137)(38,136)(39,162)(40,161)(41,160)(42,159)(43,158)(44,157)(45,156)(46,155)(47,154)(48,153)(49,152)(50,151)(51,150)(52,149)(53,148)(54,147)(55,166)(56,165)(57,164)(58,163)(59,189)(60,188)(61,187)(62,186)(63,185)(64,184)(65,183)(66,182)(67,181)(68,180)(69,179)(70,178)(71,177)(72,176)(73,175)(74,174)(75,173)(76,172)(77,171)(78,170)(79,169)(80,168)(81,167)(82,196)(83,195)(84,194)(85,193)(86,192)(87,191)(88,190)(89,216)(90,215)(91,214)(92,213)(93,212)(94,211)(95,210)(96,209)(97,208)(98,207)(99,206)(100,205)(101,204)(102,203)(103,202)(104,201)(105,200)(106,199)(107,198)(108,197) );

G=PermutationGroup([[(1,55,54,96),(2,56,28,97),(3,57,29,98),(4,58,30,99),(5,59,31,100),(6,60,32,101),(7,61,33,102),(8,62,34,103),(9,63,35,104),(10,64,36,105),(11,65,37,106),(12,66,38,107),(13,67,39,108),(14,68,40,82),(15,69,41,83),(16,70,42,84),(17,71,43,85),(18,72,44,86),(19,73,45,87),(20,74,46,88),(21,75,47,89),(22,76,48,90),(23,77,49,91),(24,78,50,92),(25,79,51,93),(26,80,52,94),(27,81,53,95),(109,163,144,206),(110,164,145,207),(111,165,146,208),(112,166,147,209),(113,167,148,210),(114,168,149,211),(115,169,150,212),(116,170,151,213),(117,171,152,214),(118,172,153,215),(119,173,154,216),(120,174,155,190),(121,175,156,191),(122,176,157,192),(123,177,158,193),(124,178,159,194),(125,179,160,195),(126,180,161,196),(127,181,162,197),(128,182,136,198),(129,183,137,199),(130,184,138,200),(131,185,139,201),(132,186,140,202),(133,187,141,203),(134,188,142,204),(135,189,143,205)], [(55,96),(56,97),(57,98),(58,99),(59,100),(60,101),(61,102),(62,103),(63,104),(64,105),(65,106),(66,107),(67,108),(68,82),(69,83),(70,84),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94),(81,95),(109,144),(110,145),(111,146),(112,147),(113,148),(114,149),(115,150),(116,151),(117,152),(118,153),(119,154),(120,155),(121,156),(122,157),(123,158),(124,159),(125,160),(126,161),(127,162),(128,136),(129,137),(130,138),(131,139),(132,140),(133,141),(134,142),(135,143)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162),(163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189),(190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216)], [(1,112),(2,111),(3,110),(4,109),(5,135),(6,134),(7,133),(8,132),(9,131),(10,130),(11,129),(12,128),(13,127),(14,126),(15,125),(16,124),(17,123),(18,122),(19,121),(20,120),(21,119),(22,118),(23,117),(24,116),(25,115),(26,114),(27,113),(28,146),(29,145),(30,144),(31,143),(32,142),(33,141),(34,140),(35,139),(36,138),(37,137),(38,136),(39,162),(40,161),(41,160),(42,159),(43,158),(44,157),(45,156),(46,155),(47,154),(48,153),(49,152),(50,151),(51,150),(52,149),(53,148),(54,147),(55,166),(56,165),(57,164),(58,163),(59,189),(60,188),(61,187),(62,186),(63,185),(64,184),(65,183),(66,182),(67,181),(68,180),(69,179),(70,178),(71,177),(72,176),(73,175),(74,174),(75,173),(76,172),(77,171),(78,170),(79,169),(80,168),(81,167),(82,196),(83,195),(84,194),(85,193),(86,192),(87,191),(88,190),(89,216),(90,215),(91,214),(92,213),(93,212),(94,211),(95,210),(96,209),(97,208),(98,207),(99,206),(100,205),(101,204),(102,203),(103,202),(104,201),(105,200),(106,199),(107,198),(108,197)]])

75 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C9A9B9C 12 18A18B18C18D···18I27A···27I36A36B36C54A···54I54J···54AA108A···108I
order122223444446669991218181818···1827···2736363654···5454···54108···108
size112254222727545424422242224···42···24442···24···44···4

75 irreducible representations

dim1111112222222222444
type+++++++++++++++---
imageC1C2C2C2C2C2S3D6D6C4○D4D9D18D18D27D54D54D42S3D42D9D42D27
kernelD42D27Dic54C4×D27C2×Dic27C27⋊D4D4×C27D4×C9C36C2×C18C27C3×D4C12C2×C6D4C4C22C9C3C1
# reps11122111223369918139

Matrix representation of D42D27 in GL4(𝔽109) generated by

108000
010800
00108108
0021
,
1000
0100
0010
00107108
,
1010200
71700
0010
0001
,
805800
872900
003333
004376
G:=sub<GL(4,GF(109))| [108,0,0,0,0,108,0,0,0,0,108,2,0,0,108,1],[1,0,0,0,0,1,0,0,0,0,1,107,0,0,0,108],[10,7,0,0,102,17,0,0,0,0,1,0,0,0,0,1],[80,87,0,0,58,29,0,0,0,0,33,43,0,0,33,76] >;

D42D27 in GAP, Magma, Sage, TeX

D_4\rtimes_2D_{27}
% in TeX

G:=Group("D4:2D27");
// GroupNames label

G:=SmallGroup(432,48);
// by ID

G=gap.SmallGroup(432,48);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,135,2804,557,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^27=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽