Extensions 1→N→G→Q→1 with N=Q8xHe3 and Q=C2

Direct product G=NxQ with N=Q8xHe3 and Q=C2
dρLabelID
C2xQ8xHe3144C2xQ8xHe3432,407

Semidirect products G=N:Q with N=Q8xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xHe3):1C2 = He3:10SD16φ: C2/C1C2 ⊆ Out Q8xHe37212+(Q8xHe3):1C2432,161
(Q8xHe3):2C2 = He3:11SD16φ: C2/C1C2 ⊆ Out Q8xHe3726(Q8xHe3):2C2432,196
(Q8xHe3):3C2 = Q8xC32:C6φ: C2/C1C2 ⊆ Out Q8xHe37212-(Q8xHe3):3C2432,368
(Q8xHe3):4C2 = (Q8xHe3):C2φ: C2/C1C2 ⊆ Out Q8xHe37212+(Q8xHe3):4C2432,369
(Q8xHe3):5C2 = Q8xHe3:C2φ: C2/C1C2 ⊆ Out Q8xHe3726(Q8xHe3):5C2432,394
(Q8xHe3):6C2 = He3:5D4:C2φ: C2/C1C2 ⊆ Out Q8xHe3726(Q8xHe3):6C2432,395
(Q8xHe3):7C2 = SD16xHe3φ: C2/C1C2 ⊆ Out Q8xHe3726(Q8xHe3):7C2432,219
(Q8xHe3):8C2 = C4oD4xHe3φ: trivial image726(Q8xHe3):8C2432,410

Non-split extensions G=N.Q with N=Q8xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xHe3).1C2 = He3:6Q16φ: C2/C1C2 ⊆ Out Q8xHe314412-(Q8xHe3).1C2432,160
(Q8xHe3).2C2 = He3:7Q16φ: C2/C1C2 ⊆ Out Q8xHe31446(Q8xHe3).2C2432,197
(Q8xHe3).3C2 = Q16xHe3φ: C2/C1C2 ⊆ Out Q8xHe31446(Q8xHe3).3C2432,222

׿
x
:
Z
F
o
wr
Q
<