# Extensions 1→N→G→Q→1 with N=Q8×He3 and Q=C2

Direct product G=N×Q with N=Q8×He3 and Q=C2
dρLabelID
C2×Q8×He3144C2xQ8xHe3432,407

Semidirect products G=N:Q with N=Q8×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×He3)⋊1C2 = He310SD16φ: C2/C1C2 ⊆ Out Q8×He37212+(Q8xHe3):1C2432,161
(Q8×He3)⋊2C2 = He311SD16φ: C2/C1C2 ⊆ Out Q8×He3726(Q8xHe3):2C2432,196
(Q8×He3)⋊3C2 = Q8×C32⋊C6φ: C2/C1C2 ⊆ Out Q8×He37212-(Q8xHe3):3C2432,368
(Q8×He3)⋊4C2 = (Q8×He3)⋊C2φ: C2/C1C2 ⊆ Out Q8×He37212+(Q8xHe3):4C2432,369
(Q8×He3)⋊5C2 = Q8×He3⋊C2φ: C2/C1C2 ⊆ Out Q8×He3726(Q8xHe3):5C2432,394
(Q8×He3)⋊6C2 = He35D4⋊C2φ: C2/C1C2 ⊆ Out Q8×He3726(Q8xHe3):6C2432,395
(Q8×He3)⋊7C2 = SD16×He3φ: C2/C1C2 ⊆ Out Q8×He3726(Q8xHe3):7C2432,219
(Q8×He3)⋊8C2 = C4○D4×He3φ: trivial image726(Q8xHe3):8C2432,410

Non-split extensions G=N.Q with N=Q8×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×He3).1C2 = He36Q16φ: C2/C1C2 ⊆ Out Q8×He314412-(Q8xHe3).1C2432,160
(Q8×He3).2C2 = He37Q16φ: C2/C1C2 ⊆ Out Q8×He31446(Q8xHe3).2C2432,197
(Q8×He3).3C2 = Q16×He3φ: C2/C1C2 ⊆ Out Q8×He31446(Q8xHe3).3C2432,222

׿
×
𝔽