Copied to
clipboard

G = He36Q16order 432 = 24·33

1st semidirect product of He3 and Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial

Aliases: He36Q16, C12.9(S3×C6), C324C8.C6, C327Q16⋊C3, (C3×C12).12D6, (Q8×He3).1C2, C323(C3×Q16), (C2×He3).29D4, He33C8.2C2, He33Q8.3C2, (Q8×C32).1S3, (Q8×C32).1C6, C324Q8.2C6, C2.6(He36D4), C324(C3⋊Q16), Q8.3(C32⋊C6), (C4×He3).10C22, (C3×C12).3(C2×C6), (C3×C6).14(C3×D4), C6.26(C3×C3⋊D4), C4.3(C2×C32⋊C6), C3.2(C3×C3⋊Q16), (C3×Q8).23(C3×S3), (C3×C6).27(C3⋊D4), SmallGroup(432,160)

Series: Derived Chief Lower central Upper central

C1C3×C12 — He36Q16
C1C3C32C3×C6C3×C12C4×He3He33Q8 — He36Q16
C32C3×C6C3×C12 — He36Q16
C1C2C4Q8

Generators and relations for He36Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, cac-1=ab-1, dad-1=a-1, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 289 in 75 conjugacy classes, 26 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, Q8, C32, C32, Dic3, C12, C12, Q16, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C3×Q8, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3⋊Q16, C3×Q16, C2×He3, C3×C3⋊C8, C324C8, C3×Dic6, C324Q8, Q8×C32, Q8×C32, C32⋊C12, C4×He3, C4×He3, C3×C3⋊Q16, C327Q16, He33C8, He33Q8, Q8×He3, He36Q16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, Q16, C3×S3, C3⋊D4, C3×D4, S3×C6, C3⋊Q16, C3×Q16, C32⋊C6, C3×C3⋊D4, C2×C32⋊C6, C3×C3⋊Q16, He36D4, He36Q16

Smallest permutation representation of He36Q16
On 144 points
Generators in S144
(9 39 120)(10 113 40)(11 33 114)(12 115 34)(13 35 116)(14 117 36)(15 37 118)(16 119 38)(25 64 121)(26 122 57)(27 58 123)(28 124 59)(29 60 125)(30 126 61)(31 62 127)(32 128 63)(41 55 106)(42 107 56)(43 49 108)(44 109 50)(45 51 110)(46 111 52)(47 53 112)(48 105 54)(65 132 100)(66 101 133)(67 134 102)(68 103 135)(69 136 104)(70 97 129)(71 130 98)(72 99 131)
(1 139 77)(2 78 140)(3 141 79)(4 80 142)(5 143 73)(6 74 144)(7 137 75)(8 76 138)(9 120 39)(10 40 113)(11 114 33)(12 34 115)(13 116 35)(14 36 117)(15 118 37)(16 38 119)(17 81 92)(18 93 82)(19 83 94)(20 95 84)(21 85 96)(22 89 86)(23 87 90)(24 91 88)(25 64 121)(26 122 57)(27 58 123)(28 124 59)(29 60 125)(30 126 61)(31 62 127)(32 128 63)(41 55 106)(42 107 56)(43 49 108)(44 109 50)(45 51 110)(46 111 52)(47 53 112)(48 105 54)(65 100 132)(66 133 101)(67 102 134)(68 135 103)(69 104 136)(70 129 97)(71 98 130)(72 131 99)
(1 15 43)(2 16 44)(3 9 45)(4 10 46)(5 11 47)(6 12 48)(7 13 41)(8 14 42)(17 132 62)(18 133 63)(19 134 64)(20 135 57)(21 136 58)(22 129 59)(23 130 60)(24 131 61)(25 94 102)(26 95 103)(27 96 104)(28 89 97)(29 90 98)(30 91 99)(31 92 100)(32 93 101)(33 112 73)(34 105 74)(35 106 75)(36 107 76)(37 108 77)(38 109 78)(39 110 79)(40 111 80)(49 139 118)(50 140 119)(51 141 120)(52 142 113)(53 143 114)(54 144 115)(55 137 116)(56 138 117)(65 127 81)(66 128 82)(67 121 83)(68 122 84)(69 123 85)(70 124 86)(71 125 87)(72 126 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 87 5 83)(2 86 6 82)(3 85 7 81)(4 84 8 88)(9 69 13 65)(10 68 14 72)(11 67 15 71)(12 66 16 70)(17 79 21 75)(18 78 22 74)(19 77 23 73)(20 76 24 80)(25 49 29 53)(26 56 30 52)(27 55 31 51)(28 54 32 50)(33 134 37 130)(34 133 38 129)(35 132 39 136)(36 131 40 135)(41 127 45 123)(42 126 46 122)(43 125 47 121)(44 124 48 128)(57 107 61 111)(58 106 62 110)(59 105 63 109)(60 112 64 108)(89 144 93 140)(90 143 94 139)(91 142 95 138)(92 141 96 137)(97 115 101 119)(98 114 102 118)(99 113 103 117)(100 120 104 116)

G:=sub<Sym(144)| (9,39,120)(10,113,40)(11,33,114)(12,115,34)(13,35,116)(14,117,36)(15,37,118)(16,119,38)(25,64,121)(26,122,57)(27,58,123)(28,124,59)(29,60,125)(30,126,61)(31,62,127)(32,128,63)(41,55,106)(42,107,56)(43,49,108)(44,109,50)(45,51,110)(46,111,52)(47,53,112)(48,105,54)(65,132,100)(66,101,133)(67,134,102)(68,103,135)(69,136,104)(70,97,129)(71,130,98)(72,99,131), (1,139,77)(2,78,140)(3,141,79)(4,80,142)(5,143,73)(6,74,144)(7,137,75)(8,76,138)(9,120,39)(10,40,113)(11,114,33)(12,34,115)(13,116,35)(14,36,117)(15,118,37)(16,38,119)(17,81,92)(18,93,82)(19,83,94)(20,95,84)(21,85,96)(22,89,86)(23,87,90)(24,91,88)(25,64,121)(26,122,57)(27,58,123)(28,124,59)(29,60,125)(30,126,61)(31,62,127)(32,128,63)(41,55,106)(42,107,56)(43,49,108)(44,109,50)(45,51,110)(46,111,52)(47,53,112)(48,105,54)(65,100,132)(66,133,101)(67,102,134)(68,135,103)(69,104,136)(70,129,97)(71,98,130)(72,131,99), (1,15,43)(2,16,44)(3,9,45)(4,10,46)(5,11,47)(6,12,48)(7,13,41)(8,14,42)(17,132,62)(18,133,63)(19,134,64)(20,135,57)(21,136,58)(22,129,59)(23,130,60)(24,131,61)(25,94,102)(26,95,103)(27,96,104)(28,89,97)(29,90,98)(30,91,99)(31,92,100)(32,93,101)(33,112,73)(34,105,74)(35,106,75)(36,107,76)(37,108,77)(38,109,78)(39,110,79)(40,111,80)(49,139,118)(50,140,119)(51,141,120)(52,142,113)(53,143,114)(54,144,115)(55,137,116)(56,138,117)(65,127,81)(66,128,82)(67,121,83)(68,122,84)(69,123,85)(70,124,86)(71,125,87)(72,126,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,87,5,83)(2,86,6,82)(3,85,7,81)(4,84,8,88)(9,69,13,65)(10,68,14,72)(11,67,15,71)(12,66,16,70)(17,79,21,75)(18,78,22,74)(19,77,23,73)(20,76,24,80)(25,49,29,53)(26,56,30,52)(27,55,31,51)(28,54,32,50)(33,134,37,130)(34,133,38,129)(35,132,39,136)(36,131,40,135)(41,127,45,123)(42,126,46,122)(43,125,47,121)(44,124,48,128)(57,107,61,111)(58,106,62,110)(59,105,63,109)(60,112,64,108)(89,144,93,140)(90,143,94,139)(91,142,95,138)(92,141,96,137)(97,115,101,119)(98,114,102,118)(99,113,103,117)(100,120,104,116)>;

G:=Group( (9,39,120)(10,113,40)(11,33,114)(12,115,34)(13,35,116)(14,117,36)(15,37,118)(16,119,38)(25,64,121)(26,122,57)(27,58,123)(28,124,59)(29,60,125)(30,126,61)(31,62,127)(32,128,63)(41,55,106)(42,107,56)(43,49,108)(44,109,50)(45,51,110)(46,111,52)(47,53,112)(48,105,54)(65,132,100)(66,101,133)(67,134,102)(68,103,135)(69,136,104)(70,97,129)(71,130,98)(72,99,131), (1,139,77)(2,78,140)(3,141,79)(4,80,142)(5,143,73)(6,74,144)(7,137,75)(8,76,138)(9,120,39)(10,40,113)(11,114,33)(12,34,115)(13,116,35)(14,36,117)(15,118,37)(16,38,119)(17,81,92)(18,93,82)(19,83,94)(20,95,84)(21,85,96)(22,89,86)(23,87,90)(24,91,88)(25,64,121)(26,122,57)(27,58,123)(28,124,59)(29,60,125)(30,126,61)(31,62,127)(32,128,63)(41,55,106)(42,107,56)(43,49,108)(44,109,50)(45,51,110)(46,111,52)(47,53,112)(48,105,54)(65,100,132)(66,133,101)(67,102,134)(68,135,103)(69,104,136)(70,129,97)(71,98,130)(72,131,99), (1,15,43)(2,16,44)(3,9,45)(4,10,46)(5,11,47)(6,12,48)(7,13,41)(8,14,42)(17,132,62)(18,133,63)(19,134,64)(20,135,57)(21,136,58)(22,129,59)(23,130,60)(24,131,61)(25,94,102)(26,95,103)(27,96,104)(28,89,97)(29,90,98)(30,91,99)(31,92,100)(32,93,101)(33,112,73)(34,105,74)(35,106,75)(36,107,76)(37,108,77)(38,109,78)(39,110,79)(40,111,80)(49,139,118)(50,140,119)(51,141,120)(52,142,113)(53,143,114)(54,144,115)(55,137,116)(56,138,117)(65,127,81)(66,128,82)(67,121,83)(68,122,84)(69,123,85)(70,124,86)(71,125,87)(72,126,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,87,5,83)(2,86,6,82)(3,85,7,81)(4,84,8,88)(9,69,13,65)(10,68,14,72)(11,67,15,71)(12,66,16,70)(17,79,21,75)(18,78,22,74)(19,77,23,73)(20,76,24,80)(25,49,29,53)(26,56,30,52)(27,55,31,51)(28,54,32,50)(33,134,37,130)(34,133,38,129)(35,132,39,136)(36,131,40,135)(41,127,45,123)(42,126,46,122)(43,125,47,121)(44,124,48,128)(57,107,61,111)(58,106,62,110)(59,105,63,109)(60,112,64,108)(89,144,93,140)(90,143,94,139)(91,142,95,138)(92,141,96,137)(97,115,101,119)(98,114,102,118)(99,113,103,117)(100,120,104,116) );

G=PermutationGroup([[(9,39,120),(10,113,40),(11,33,114),(12,115,34),(13,35,116),(14,117,36),(15,37,118),(16,119,38),(25,64,121),(26,122,57),(27,58,123),(28,124,59),(29,60,125),(30,126,61),(31,62,127),(32,128,63),(41,55,106),(42,107,56),(43,49,108),(44,109,50),(45,51,110),(46,111,52),(47,53,112),(48,105,54),(65,132,100),(66,101,133),(67,134,102),(68,103,135),(69,136,104),(70,97,129),(71,130,98),(72,99,131)], [(1,139,77),(2,78,140),(3,141,79),(4,80,142),(5,143,73),(6,74,144),(7,137,75),(8,76,138),(9,120,39),(10,40,113),(11,114,33),(12,34,115),(13,116,35),(14,36,117),(15,118,37),(16,38,119),(17,81,92),(18,93,82),(19,83,94),(20,95,84),(21,85,96),(22,89,86),(23,87,90),(24,91,88),(25,64,121),(26,122,57),(27,58,123),(28,124,59),(29,60,125),(30,126,61),(31,62,127),(32,128,63),(41,55,106),(42,107,56),(43,49,108),(44,109,50),(45,51,110),(46,111,52),(47,53,112),(48,105,54),(65,100,132),(66,133,101),(67,102,134),(68,135,103),(69,104,136),(70,129,97),(71,98,130),(72,131,99)], [(1,15,43),(2,16,44),(3,9,45),(4,10,46),(5,11,47),(6,12,48),(7,13,41),(8,14,42),(17,132,62),(18,133,63),(19,134,64),(20,135,57),(21,136,58),(22,129,59),(23,130,60),(24,131,61),(25,94,102),(26,95,103),(27,96,104),(28,89,97),(29,90,98),(30,91,99),(31,92,100),(32,93,101),(33,112,73),(34,105,74),(35,106,75),(36,107,76),(37,108,77),(38,109,78),(39,110,79),(40,111,80),(49,139,118),(50,140,119),(51,141,120),(52,142,113),(53,143,114),(54,144,115),(55,137,116),(56,138,117),(65,127,81),(66,128,82),(67,121,83),(68,122,84),(69,123,85),(70,124,86),(71,125,87),(72,126,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,87,5,83),(2,86,6,82),(3,85,7,81),(4,84,8,88),(9,69,13,65),(10,68,14,72),(11,67,15,71),(12,66,16,70),(17,79,21,75),(18,78,22,74),(19,77,23,73),(20,76,24,80),(25,49,29,53),(26,56,30,52),(27,55,31,51),(28,54,32,50),(33,134,37,130),(34,133,38,129),(35,132,39,136),(36,131,40,135),(41,127,45,123),(42,126,46,122),(43,125,47,121),(44,124,48,128),(57,107,61,111),(58,106,62,110),(59,105,63,109),(60,112,64,108),(89,144,93,140),(90,143,94,139),(91,142,95,138),(92,141,96,137),(97,115,101,119),(98,114,102,118),(99,113,103,117),(100,120,104,116)]])

41 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B4C6A6B6C6D6E6F8A8B12A12B12C12D12E12F···12P12Q12R24A24B24C24D
order1233333344466666688121212121212···12121224242424
size11233666243623366618184446612···12363618181818

41 irreducible representations

dim1111111112222222222244666
type++++-+++--++
imageC1C2C2C2C3C6C6C6He36Q16S3D4D6Q16C3×S3C3⋊D4C3×D4S3×C6C3×Q16C3×C3⋊D4C3⋊Q16C3×C3⋊Q16C32⋊C6C2×C32⋊C6He36D4
kernelHe36Q16He33C8He33Q8Q8×He3C327Q16C324C8C324Q8Q8×C32C1Q8×C32C2×He3C3×C12He3C3×Q8C3×C6C3×C6C12C32C6C32C3Q8C4C2
# reps111122221111222224412112

Matrix representation of He36Q16 in GL10(𝔽73)

07200000000
17200000000
00072000000
00172000000
0000100000
0000010000
00000072100
00000072000
00000000072
00000000172
,
1000000000
0100000000
0010000000
0001000000
00007210000
00007200000
00000072100
00000072000
00000000721
00000000720
,
1000000000
0100000000
0010000000
0001000000
0000001000
0000000100
0000000010
0000000001
0000100000
0000010000
,
00032000000
00320000000
057032000000
570320000000
000031450000
00003420000
000000314500
00000034200
000000003145
00000000342
,
60020000000
06002000000
610130000000
061013000000
00007200000
00000720000
00000072000
00000007200
00000000720
00000000072

G:=sub<GL(10,GF(73))| [0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,57,0,0,0,0,0,0,0,0,57,0,0,0,0,0,0,0,0,32,0,32,0,0,0,0,0,0,32,0,32,0,0,0,0,0,0,0,0,0,0,0,31,3,0,0,0,0,0,0,0,0,45,42,0,0,0,0,0,0,0,0,0,0,31,3,0,0,0,0,0,0,0,0,45,42,0,0,0,0,0,0,0,0,0,0,31,3,0,0,0,0,0,0,0,0,45,42],[60,0,61,0,0,0,0,0,0,0,0,60,0,61,0,0,0,0,0,0,2,0,13,0,0,0,0,0,0,0,0,2,0,13,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72] >;

He36Q16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_6Q_{16}
% in TeX

G:=Group("He3:6Q16");
// GroupNames label

G:=SmallGroup(432,160);
// by ID

G=gap.SmallGroup(432,160);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,176,1011,514,80,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽