extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D28)⋊1C2 = D28⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):1C2 | 448,268 |
(C2×C4○D28)⋊2C2 = C42.276D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):2C2 | 448,930 |
(C2×C4○D28)⋊3C2 = C24.27D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):3C2 | 448,943 |
(C2×C4○D28)⋊4C2 = C14.2- (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):4C2 | 448,960 |
(C2×C4○D28)⋊5C2 = C42⋊12D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):5C2 | 448,1000 |
(C2×C4○D28)⋊6C2 = C42.228D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):6C2 | 448,1001 |
(C2×C4○D28)⋊7C2 = D28⋊23D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):7C2 | 448,1003 |
(C2×C4○D28)⋊8C2 = D28⋊24D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):8C2 | 448,1004 |
(C2×C4○D28)⋊9C2 = Dic14⋊23D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):9C2 | 448,1005 |
(C2×C4○D28)⋊10C2 = Dic14⋊24D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):10C2 | 448,1006 |
(C2×C4○D28)⋊11C2 = C14.1212+ (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):11C2 | 448,1107 |
(C2×C4○D28)⋊12C2 = C14.822- (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):12C2 | 448,1108 |
(C2×C4○D28)⋊13C2 = C2×D56⋊7C2 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):13C2 | 448,1194 |
(C2×C4○D28)⋊14C2 = C24.72D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):14C2 | 448,1244 |
(C2×C4○D28)⋊15C2 = D28⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):15C2 | 448,571 |
(C2×C4○D28)⋊16C2 = C14.2+ (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):16C2 | 448,963 |
(C2×C4○D28)⋊17C2 = C42⋊8D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):17C2 | 448,977 |
(C2×C4○D28)⋊18C2 = C42⋊9D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):18C2 | 448,978 |
(C2×C4○D28)⋊19C2 = Dic14⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):19C2 | 448,1052 |
(C2×C4○D28)⋊20C2 = C14.382+ (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):20C2 | 448,1060 |
(C2×C4○D28)⋊21C2 = C14.722- (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):21C2 | 448,1061 |
(C2×C4○D28)⋊22C2 = D28⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):22C2 | 448,1065 |
(C2×C4○D28)⋊23C2 = C14.172- (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):23C2 | 448,1082 |
(C2×C4○D28)⋊24C2 = D28⋊22D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):24C2 | 448,1084 |
(C2×C4○D28)⋊25C2 = Dic14⋊22D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):25C2 | 448,1086 |
(C2×C4○D28)⋊26C2 = C2×C8⋊D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):26C2 | 448,1199 |
(C2×C4○D28)⋊27C2 = C56.9C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | 4 | (C2xC4oD28):27C2 | 448,1201 |
(C2×C4○D28)⋊28C2 = C2×D4.D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):28C2 | 448,1246 |
(C2×C4○D28)⋊29C2 = C24.41D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):29C2 | 448,1258 |
(C2×C4○D28)⋊30C2 = C2×D4.8D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):30C2 | 448,1274 |
(C2×C4○D28)⋊31C2 = C28.C24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | 4 | (C2xC4oD28):31C2 | 448,1275 |
(C2×C4○D28)⋊32C2 = (C2×C28)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):32C2 | 448,1285 |
(C2×C4○D28)⋊33C2 = C14.1082- (1+4) | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):33C2 | 448,1286 |
(C2×C4○D28)⋊34C2 = C2×D4⋊6D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):34C2 | 448,1371 |
(C2×C4○D28)⋊35C2 = C2×Q8.10D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):35C2 | 448,1374 |
(C2×C4○D28)⋊36C2 = C2×D7×C4○D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):36C2 | 448,1375 |
(C2×C4○D28)⋊37C2 = C2×D4⋊8D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | | (C2xC4oD28):37C2 | 448,1376 |
(C2×C4○D28)⋊38C2 = C2×D4.10D14 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 224 | | (C2xC4oD28):38C2 | 448,1377 |
(C2×C4○D28)⋊39C2 = C14.C25 | φ: C2/C1 → C2 ⊆ Out C2×C4○D28 | 112 | 4 | (C2xC4oD28):39C2 | 448,1378 |