Copied to
clipboard

?

G = D2822D4order 448 = 26·7

10th semidirect product of D28 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2822D4, C14.182- (1+4), C22⋊Q88D7, C75(D46D4), C4.112(D4×D7), C4⋊C4.189D14, D14.21(C2×D4), C28.235(C2×D4), D14⋊D425C2, D28⋊C426C2, D142Q825C2, Dic75(C4○D4), (C2×Q8).126D14, C22⋊C4.16D14, C14.77(C22×D4), Dic7⋊Q814C2, D14.D425C2, D14.5D418C2, (C2×C28).503C23, (C2×C14).175C24, D14⋊C4.23C22, (C22×C4).237D14, (C2×D28).149C22, Dic7⋊C4.27C22, C4⋊Dic7.215C22, (Q8×C14).107C22, C22.196(C23×D7), C23.119(C22×D7), (C22×C28).255C22, (C22×C14).203C23, (C2×Dic7).234C23, (C4×Dic7).105C22, (C22×D7).197C23, C23.D7.116C22, C2.19(Q8.10D14), (C2×Dic14).294C22, C2.50(C2×D4×D7), (D7×C4⋊C4)⋊26C2, (C4×C7⋊D4)⋊23C2, C2.49(D7×C4○D4), (C2×C4○D28)⋊24C2, (C2×Q82D7)⋊8C2, (C7×C22⋊Q8)⋊11C2, (C2×C4×D7).95C22, C14.161(C2×C4○D4), (C2×C4).48(C22×D7), (C7×C4⋊C4).158C22, (C2×C7⋊D4).123C22, (C7×C22⋊C4).30C22, SmallGroup(448,1084)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D2822D4
C1C7C14C2×C14C22×D7C2×C4×D7D7×C4⋊C4 — D2822D4
C7C2×C14 — D2822D4

Subgroups: 1404 in 292 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×6], C4 [×2], C4 [×11], C22, C22 [×14], C7, C2×C4 [×2], C2×C4 [×4], C2×C4 [×21], D4 [×14], Q8 [×4], C23, C23 [×3], D7 [×5], C14 [×3], C14, C42, C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×7], C22×C4, C22×C4 [×7], C2×D4 [×6], C2×Q8, C2×Q8, C4○D4 [×8], Dic7 [×2], Dic7 [×4], C28 [×2], C28 [×5], D14 [×4], D14 [×7], C2×C14, C2×C14 [×3], C2×C4⋊C4 [×2], C4×D4 [×2], C4⋊D4 [×2], C22⋊Q8, C22⋊Q8, C22.D4 [×4], C4⋊Q8, C2×C4○D4 [×2], Dic14 [×2], C4×D7 [×14], D28 [×4], D28 [×4], C2×Dic7 [×3], C2×Dic7 [×2], C7⋊D4 [×6], C2×C28 [×2], C2×C28 [×4], C2×C28 [×2], C7×Q8 [×2], C22×D7, C22×D7 [×2], C22×C14, D46D4, C4×Dic7, Dic7⋊C4, Dic7⋊C4 [×4], C4⋊Dic7 [×2], D14⋊C4, D14⋊C4 [×4], C23.D7, C7×C22⋊C4 [×2], C7×C4⋊C4, C7×C4⋊C4 [×2], C2×Dic14, C2×C4×D7, C2×C4×D7 [×6], C2×D28, C2×D28 [×2], C4○D28 [×4], Q82D7 [×4], C2×C7⋊D4, C2×C7⋊D4 [×2], C22×C28, Q8×C14, D14.D4 [×2], D14⋊D4 [×2], D7×C4⋊C4 [×2], D28⋊C4, D14.5D4 [×2], D142Q8, C4×C7⋊D4, Dic7⋊Q8, C7×C22⋊Q8, C2×C4○D28, C2×Q82D7, D2822D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C4○D4 [×2], C24, D14 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D7 [×7], D46D4, D4×D7 [×2], C23×D7, C2×D4×D7, Q8.10D14, D7×C4○D4, D2822D4

Generators and relations
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, cac-1=dad=a13, cbc-1=a12b, dbd=a26b, dcd=c-1 >

Smallest permutation representation
On 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 149)(2 148)(3 147)(4 146)(5 145)(6 144)(7 143)(8 142)(9 141)(10 168)(11 167)(12 166)(13 165)(14 164)(15 163)(16 162)(17 161)(18 160)(19 159)(20 158)(21 157)(22 156)(23 155)(24 154)(25 153)(26 152)(27 151)(28 150)(29 183)(30 182)(31 181)(32 180)(33 179)(34 178)(35 177)(36 176)(37 175)(38 174)(39 173)(40 172)(41 171)(42 170)(43 169)(44 196)(45 195)(46 194)(47 193)(48 192)(49 191)(50 190)(51 189)(52 188)(53 187)(54 186)(55 185)(56 184)(57 137)(58 136)(59 135)(60 134)(61 133)(62 132)(63 131)(64 130)(65 129)(66 128)(67 127)(68 126)(69 125)(70 124)(71 123)(72 122)(73 121)(74 120)(75 119)(76 118)(77 117)(78 116)(79 115)(80 114)(81 113)(82 140)(83 139)(84 138)(85 204)(86 203)(87 202)(88 201)(89 200)(90 199)(91 198)(92 197)(93 224)(94 223)(95 222)(96 221)(97 220)(98 219)(99 218)(100 217)(101 216)(102 215)(103 214)(104 213)(105 212)(106 211)(107 210)(108 209)(109 208)(110 207)(111 206)(112 205)
(1 92 157 205)(2 105 158 218)(3 90 159 203)(4 103 160 216)(5 88 161 201)(6 101 162 214)(7 86 163 199)(8 99 164 212)(9 112 165 197)(10 97 166 210)(11 110 167 223)(12 95 168 208)(13 108 141 221)(14 93 142 206)(15 106 143 219)(16 91 144 204)(17 104 145 217)(18 89 146 202)(19 102 147 215)(20 87 148 200)(21 100 149 213)(22 85 150 198)(23 98 151 211)(24 111 152 224)(25 96 153 209)(26 109 154 222)(27 94 155 207)(28 107 156 220)(29 69 175 121)(30 82 176 134)(31 67 177 119)(32 80 178 132)(33 65 179 117)(34 78 180 130)(35 63 181 115)(36 76 182 128)(37 61 183 113)(38 74 184 126)(39 59 185 139)(40 72 186 124)(41 57 187 137)(42 70 188 122)(43 83 189 135)(44 68 190 120)(45 81 191 133)(46 66 192 118)(47 79 193 131)(48 64 194 116)(49 77 195 129)(50 62 196 114)(51 75 169 127)(52 60 170 140)(53 73 171 125)(54 58 172 138)(55 71 173 123)(56 84 174 136)
(1 134)(2 119)(3 132)(4 117)(5 130)(6 115)(7 128)(8 113)(9 126)(10 139)(11 124)(12 137)(13 122)(14 135)(15 120)(16 133)(17 118)(18 131)(19 116)(20 129)(21 114)(22 127)(23 140)(24 125)(25 138)(26 123)(27 136)(28 121)(29 220)(30 205)(31 218)(32 203)(33 216)(34 201)(35 214)(36 199)(37 212)(38 197)(39 210)(40 223)(41 208)(42 221)(43 206)(44 219)(45 204)(46 217)(47 202)(48 215)(49 200)(50 213)(51 198)(52 211)(53 224)(54 209)(55 222)(56 207)(57 168)(58 153)(59 166)(60 151)(61 164)(62 149)(63 162)(64 147)(65 160)(66 145)(67 158)(68 143)(69 156)(70 141)(71 154)(72 167)(73 152)(74 165)(75 150)(76 163)(77 148)(78 161)(79 146)(80 159)(81 144)(82 157)(83 142)(84 155)(85 169)(86 182)(87 195)(88 180)(89 193)(90 178)(91 191)(92 176)(93 189)(94 174)(95 187)(96 172)(97 185)(98 170)(99 183)(100 196)(101 181)(102 194)(103 179)(104 192)(105 177)(106 190)(107 175)(108 188)(109 173)(110 186)(111 171)(112 184)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,149)(2,148)(3,147)(4,146)(5,145)(6,144)(7,143)(8,142)(9,141)(10,168)(11,167)(12,166)(13,165)(14,164)(15,163)(16,162)(17,161)(18,160)(19,159)(20,158)(21,157)(22,156)(23,155)(24,154)(25,153)(26,152)(27,151)(28,150)(29,183)(30,182)(31,181)(32,180)(33,179)(34,178)(35,177)(36,176)(37,175)(38,174)(39,173)(40,172)(41,171)(42,170)(43,169)(44,196)(45,195)(46,194)(47,193)(48,192)(49,191)(50,190)(51,189)(52,188)(53,187)(54,186)(55,185)(56,184)(57,137)(58,136)(59,135)(60,134)(61,133)(62,132)(63,131)(64,130)(65,129)(66,128)(67,127)(68,126)(69,125)(70,124)(71,123)(72,122)(73,121)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,140)(83,139)(84,138)(85,204)(86,203)(87,202)(88,201)(89,200)(90,199)(91,198)(92,197)(93,224)(94,223)(95,222)(96,221)(97,220)(98,219)(99,218)(100,217)(101,216)(102,215)(103,214)(104,213)(105,212)(106,211)(107,210)(108,209)(109,208)(110,207)(111,206)(112,205), (1,92,157,205)(2,105,158,218)(3,90,159,203)(4,103,160,216)(5,88,161,201)(6,101,162,214)(7,86,163,199)(8,99,164,212)(9,112,165,197)(10,97,166,210)(11,110,167,223)(12,95,168,208)(13,108,141,221)(14,93,142,206)(15,106,143,219)(16,91,144,204)(17,104,145,217)(18,89,146,202)(19,102,147,215)(20,87,148,200)(21,100,149,213)(22,85,150,198)(23,98,151,211)(24,111,152,224)(25,96,153,209)(26,109,154,222)(27,94,155,207)(28,107,156,220)(29,69,175,121)(30,82,176,134)(31,67,177,119)(32,80,178,132)(33,65,179,117)(34,78,180,130)(35,63,181,115)(36,76,182,128)(37,61,183,113)(38,74,184,126)(39,59,185,139)(40,72,186,124)(41,57,187,137)(42,70,188,122)(43,83,189,135)(44,68,190,120)(45,81,191,133)(46,66,192,118)(47,79,193,131)(48,64,194,116)(49,77,195,129)(50,62,196,114)(51,75,169,127)(52,60,170,140)(53,73,171,125)(54,58,172,138)(55,71,173,123)(56,84,174,136), (1,134)(2,119)(3,132)(4,117)(5,130)(6,115)(7,128)(8,113)(9,126)(10,139)(11,124)(12,137)(13,122)(14,135)(15,120)(16,133)(17,118)(18,131)(19,116)(20,129)(21,114)(22,127)(23,140)(24,125)(25,138)(26,123)(27,136)(28,121)(29,220)(30,205)(31,218)(32,203)(33,216)(34,201)(35,214)(36,199)(37,212)(38,197)(39,210)(40,223)(41,208)(42,221)(43,206)(44,219)(45,204)(46,217)(47,202)(48,215)(49,200)(50,213)(51,198)(52,211)(53,224)(54,209)(55,222)(56,207)(57,168)(58,153)(59,166)(60,151)(61,164)(62,149)(63,162)(64,147)(65,160)(66,145)(67,158)(68,143)(69,156)(70,141)(71,154)(72,167)(73,152)(74,165)(75,150)(76,163)(77,148)(78,161)(79,146)(80,159)(81,144)(82,157)(83,142)(84,155)(85,169)(86,182)(87,195)(88,180)(89,193)(90,178)(91,191)(92,176)(93,189)(94,174)(95,187)(96,172)(97,185)(98,170)(99,183)(100,196)(101,181)(102,194)(103,179)(104,192)(105,177)(106,190)(107,175)(108,188)(109,173)(110,186)(111,171)(112,184)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,149)(2,148)(3,147)(4,146)(5,145)(6,144)(7,143)(8,142)(9,141)(10,168)(11,167)(12,166)(13,165)(14,164)(15,163)(16,162)(17,161)(18,160)(19,159)(20,158)(21,157)(22,156)(23,155)(24,154)(25,153)(26,152)(27,151)(28,150)(29,183)(30,182)(31,181)(32,180)(33,179)(34,178)(35,177)(36,176)(37,175)(38,174)(39,173)(40,172)(41,171)(42,170)(43,169)(44,196)(45,195)(46,194)(47,193)(48,192)(49,191)(50,190)(51,189)(52,188)(53,187)(54,186)(55,185)(56,184)(57,137)(58,136)(59,135)(60,134)(61,133)(62,132)(63,131)(64,130)(65,129)(66,128)(67,127)(68,126)(69,125)(70,124)(71,123)(72,122)(73,121)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,140)(83,139)(84,138)(85,204)(86,203)(87,202)(88,201)(89,200)(90,199)(91,198)(92,197)(93,224)(94,223)(95,222)(96,221)(97,220)(98,219)(99,218)(100,217)(101,216)(102,215)(103,214)(104,213)(105,212)(106,211)(107,210)(108,209)(109,208)(110,207)(111,206)(112,205), (1,92,157,205)(2,105,158,218)(3,90,159,203)(4,103,160,216)(5,88,161,201)(6,101,162,214)(7,86,163,199)(8,99,164,212)(9,112,165,197)(10,97,166,210)(11,110,167,223)(12,95,168,208)(13,108,141,221)(14,93,142,206)(15,106,143,219)(16,91,144,204)(17,104,145,217)(18,89,146,202)(19,102,147,215)(20,87,148,200)(21,100,149,213)(22,85,150,198)(23,98,151,211)(24,111,152,224)(25,96,153,209)(26,109,154,222)(27,94,155,207)(28,107,156,220)(29,69,175,121)(30,82,176,134)(31,67,177,119)(32,80,178,132)(33,65,179,117)(34,78,180,130)(35,63,181,115)(36,76,182,128)(37,61,183,113)(38,74,184,126)(39,59,185,139)(40,72,186,124)(41,57,187,137)(42,70,188,122)(43,83,189,135)(44,68,190,120)(45,81,191,133)(46,66,192,118)(47,79,193,131)(48,64,194,116)(49,77,195,129)(50,62,196,114)(51,75,169,127)(52,60,170,140)(53,73,171,125)(54,58,172,138)(55,71,173,123)(56,84,174,136), (1,134)(2,119)(3,132)(4,117)(5,130)(6,115)(7,128)(8,113)(9,126)(10,139)(11,124)(12,137)(13,122)(14,135)(15,120)(16,133)(17,118)(18,131)(19,116)(20,129)(21,114)(22,127)(23,140)(24,125)(25,138)(26,123)(27,136)(28,121)(29,220)(30,205)(31,218)(32,203)(33,216)(34,201)(35,214)(36,199)(37,212)(38,197)(39,210)(40,223)(41,208)(42,221)(43,206)(44,219)(45,204)(46,217)(47,202)(48,215)(49,200)(50,213)(51,198)(52,211)(53,224)(54,209)(55,222)(56,207)(57,168)(58,153)(59,166)(60,151)(61,164)(62,149)(63,162)(64,147)(65,160)(66,145)(67,158)(68,143)(69,156)(70,141)(71,154)(72,167)(73,152)(74,165)(75,150)(76,163)(77,148)(78,161)(79,146)(80,159)(81,144)(82,157)(83,142)(84,155)(85,169)(86,182)(87,195)(88,180)(89,193)(90,178)(91,191)(92,176)(93,189)(94,174)(95,187)(96,172)(97,185)(98,170)(99,183)(100,196)(101,181)(102,194)(103,179)(104,192)(105,177)(106,190)(107,175)(108,188)(109,173)(110,186)(111,171)(112,184) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,149),(2,148),(3,147),(4,146),(5,145),(6,144),(7,143),(8,142),(9,141),(10,168),(11,167),(12,166),(13,165),(14,164),(15,163),(16,162),(17,161),(18,160),(19,159),(20,158),(21,157),(22,156),(23,155),(24,154),(25,153),(26,152),(27,151),(28,150),(29,183),(30,182),(31,181),(32,180),(33,179),(34,178),(35,177),(36,176),(37,175),(38,174),(39,173),(40,172),(41,171),(42,170),(43,169),(44,196),(45,195),(46,194),(47,193),(48,192),(49,191),(50,190),(51,189),(52,188),(53,187),(54,186),(55,185),(56,184),(57,137),(58,136),(59,135),(60,134),(61,133),(62,132),(63,131),(64,130),(65,129),(66,128),(67,127),(68,126),(69,125),(70,124),(71,123),(72,122),(73,121),(74,120),(75,119),(76,118),(77,117),(78,116),(79,115),(80,114),(81,113),(82,140),(83,139),(84,138),(85,204),(86,203),(87,202),(88,201),(89,200),(90,199),(91,198),(92,197),(93,224),(94,223),(95,222),(96,221),(97,220),(98,219),(99,218),(100,217),(101,216),(102,215),(103,214),(104,213),(105,212),(106,211),(107,210),(108,209),(109,208),(110,207),(111,206),(112,205)], [(1,92,157,205),(2,105,158,218),(3,90,159,203),(4,103,160,216),(5,88,161,201),(6,101,162,214),(7,86,163,199),(8,99,164,212),(9,112,165,197),(10,97,166,210),(11,110,167,223),(12,95,168,208),(13,108,141,221),(14,93,142,206),(15,106,143,219),(16,91,144,204),(17,104,145,217),(18,89,146,202),(19,102,147,215),(20,87,148,200),(21,100,149,213),(22,85,150,198),(23,98,151,211),(24,111,152,224),(25,96,153,209),(26,109,154,222),(27,94,155,207),(28,107,156,220),(29,69,175,121),(30,82,176,134),(31,67,177,119),(32,80,178,132),(33,65,179,117),(34,78,180,130),(35,63,181,115),(36,76,182,128),(37,61,183,113),(38,74,184,126),(39,59,185,139),(40,72,186,124),(41,57,187,137),(42,70,188,122),(43,83,189,135),(44,68,190,120),(45,81,191,133),(46,66,192,118),(47,79,193,131),(48,64,194,116),(49,77,195,129),(50,62,196,114),(51,75,169,127),(52,60,170,140),(53,73,171,125),(54,58,172,138),(55,71,173,123),(56,84,174,136)], [(1,134),(2,119),(3,132),(4,117),(5,130),(6,115),(7,128),(8,113),(9,126),(10,139),(11,124),(12,137),(13,122),(14,135),(15,120),(16,133),(17,118),(18,131),(19,116),(20,129),(21,114),(22,127),(23,140),(24,125),(25,138),(26,123),(27,136),(28,121),(29,220),(30,205),(31,218),(32,203),(33,216),(34,201),(35,214),(36,199),(37,212),(38,197),(39,210),(40,223),(41,208),(42,221),(43,206),(44,219),(45,204),(46,217),(47,202),(48,215),(49,200),(50,213),(51,198),(52,211),(53,224),(54,209),(55,222),(56,207),(57,168),(58,153),(59,166),(60,151),(61,164),(62,149),(63,162),(64,147),(65,160),(66,145),(67,158),(68,143),(69,156),(70,141),(71,154),(72,167),(73,152),(74,165),(75,150),(76,163),(77,148),(78,161),(79,146),(80,159),(81,144),(82,157),(83,142),(84,155),(85,169),(86,182),(87,195),(88,180),(89,193),(90,178),(91,191),(92,176),(93,189),(94,174),(95,187),(96,172),(97,185),(98,170),(99,183),(100,196),(101,181),(102,194),(103,179),(104,192),(105,177),(106,190),(107,175),(108,188),(109,173),(110,186),(111,171),(112,184)])

Matrix representation G ⊆ GL6(𝔽29)

0120000
1200000
0082600
0032800
000010
000001
,
100000
0280000
0082600
00212100
0000280
0000028
,
100000
010000
001000
0032800
0000149
00002015
,
010000
100000
001000
0032800
00002015
0000149

G:=sub<GL(6,GF(29))| [0,12,0,0,0,0,12,0,0,0,0,0,0,0,8,3,0,0,0,0,26,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,8,21,0,0,0,0,26,21,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,28,0,0,0,0,0,0,14,20,0,0,0,0,9,15],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,0,28,0,0,0,0,0,0,20,14,0,0,0,0,15,9] >;

67 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O7A7B7C14A···14I14J···14O28A···28L28M···28X
order122222222244444444444444477714···1414···1428···2828···28
size11114141414142822224444141414142828282222···24···44···48···8

67 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D142- (1+4)D4×D7Q8.10D14D7×C4○D4
kernelD2822D4D14.D4D14⋊D4D7×C4⋊C4D28⋊C4D14.5D4D142Q8C4×C7⋊D4Dic7⋊Q8C7×C22⋊Q8C2×C4○D28C2×Q82D7D28C22⋊Q8Dic7C22⋊C4C4⋊C4C22×C4C2×Q8C14C4C2C2
# reps12221211111143469331666

In GAP, Magma, Sage, TeX

D_{28}\rtimes_{22}D_4
% in TeX

G:=Group("D28:22D4");
// GroupNames label

G:=SmallGroup(448,1084);
// by ID

G=gap.SmallGroup(448,1084);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,120,219,268,1571,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^13,c*b*c^-1=a^12*b,d*b*d=a^26*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽