Copied to
clipboard

?

G = D2824D4order 448 = 26·7

2nd semidirect product of D28 and D4 acting through Inn(D28)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2824D4, C42.109D14, C14.592- (1+4), (C4×D4)⋊13D7, (C4×D28)⋊29C2, (D4×C28)⋊15C2, C282(C4○D4), C43(C4○D28), C282D48C2, C72(D46D4), C4.140(D4×D7), C4⋊C4.316D14, C282Q824C2, D14.15(C2×D4), C28.346(C2×D4), (C2×D4).214D14, D14.D46C2, (C2×C14).95C24, C14.50(C22×D4), C28.48D420C2, (C4×C28).152C22, (C2×C28).783C23, D14⋊C4.98C22, C22⋊C4.110D14, (C22×C4).208D14, C23.95(C22×D7), (C2×D28).287C22, (D4×C14).257C22, Dic7⋊C4.65C22, C4⋊Dic7.199C22, (C2×Dic7).41C23, C22.120(C23×D7), C23.D7.12C22, (C22×C14).165C23, (C22×C28).107C22, (C22×D7).173C23, C2.16(D4.10D14), (C2×Dic14).239C22, C2.23(C2×D4×D7), (D7×C4⋊C4)⋊15C2, (C2×C4○D28)⋊8C2, C14.42(C2×C4○D4), C2.46(C2×C4○D28), (C2×C4×D7).64C22, (C7×C4⋊C4).326C22, (C2×C4).579(C22×D7), (C2×C7⋊D4).113C22, (C7×C22⋊C4).122C22, SmallGroup(448,1004)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D2824D4
C1C7C14C2×C14C22×D7C2×C4×D7D7×C4⋊C4 — D2824D4
C7C2×C14 — D2824D4

Subgroups: 1332 in 292 conjugacy classes, 107 normal (29 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×9], C22, C22 [×14], C7, C2×C4 [×3], C2×C4 [×2], C2×C4 [×22], D4 [×14], Q8 [×4], C23 [×2], C23 [×2], D7 [×4], C14 [×3], C14 [×2], C42, C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×9], C22×C4 [×2], C22×C4 [×6], C2×D4, C2×D4 [×5], C2×Q8 [×2], C4○D4 [×8], Dic7 [×6], C28 [×4], C28 [×3], D14 [×4], D14 [×4], C2×C14, C2×C14 [×6], C2×C4⋊C4 [×2], C4×D4, C4×D4, C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×4], C4⋊Q8, C2×C4○D4 [×2], Dic14 [×4], C4×D7 [×12], D28 [×4], C2×Dic7 [×6], C7⋊D4 [×8], C2×C28 [×3], C2×C28 [×2], C2×C28 [×4], C7×D4 [×2], C22×D7 [×2], C22×C14 [×2], D46D4, Dic7⋊C4 [×4], C4⋊Dic7, C4⋊Dic7 [×4], D14⋊C4 [×2], C23.D7 [×4], C4×C28, C7×C22⋊C4 [×2], C7×C4⋊C4, C2×Dic14 [×2], C2×C4×D7 [×6], C2×D28, C4○D28 [×8], C2×C7⋊D4 [×4], C22×C28 [×2], D4×C14, C282Q8, C4×D28, D14.D4 [×4], D7×C4⋊C4 [×2], C28.48D4 [×2], C282D4 [×2], D4×C28, C2×C4○D28 [×2], D2824D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C4○D4 [×2], C24, D14 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D7 [×7], D46D4, C4○D28 [×2], D4×D7 [×2], C23×D7, C2×C4○D28, C2×D4×D7, D4.10D14, D2824D4

Generators and relations
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a14b, dcd=c-1 >

Smallest permutation representation
On 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 221)(2 220)(3 219)(4 218)(5 217)(6 216)(7 215)(8 214)(9 213)(10 212)(11 211)(12 210)(13 209)(14 208)(15 207)(16 206)(17 205)(18 204)(19 203)(20 202)(21 201)(22 200)(23 199)(24 198)(25 197)(26 224)(27 223)(28 222)(29 149)(30 148)(31 147)(32 146)(33 145)(34 144)(35 143)(36 142)(37 141)(38 168)(39 167)(40 166)(41 165)(42 164)(43 163)(44 162)(45 161)(46 160)(47 159)(48 158)(49 157)(50 156)(51 155)(52 154)(53 153)(54 152)(55 151)(56 150)(57 187)(58 186)(59 185)(60 184)(61 183)(62 182)(63 181)(64 180)(65 179)(66 178)(67 177)(68 176)(69 175)(70 174)(71 173)(72 172)(73 171)(74 170)(75 169)(76 196)(77 195)(78 194)(79 193)(80 192)(81 191)(82 190)(83 189)(84 188)(85 133)(86 132)(87 131)(88 130)(89 129)(90 128)(91 127)(92 126)(93 125)(94 124)(95 123)(96 122)(97 121)(98 120)(99 119)(100 118)(101 117)(102 116)(103 115)(104 114)(105 113)(106 140)(107 139)(108 138)(109 137)(110 136)(111 135)(112 134)
(1 144 215 56)(2 145 216 29)(3 146 217 30)(4 147 218 31)(5 148 219 32)(6 149 220 33)(7 150 221 34)(8 151 222 35)(9 152 223 36)(10 153 224 37)(11 154 197 38)(12 155 198 39)(13 156 199 40)(14 157 200 41)(15 158 201 42)(16 159 202 43)(17 160 203 44)(18 161 204 45)(19 162 205 46)(20 163 206 47)(21 164 207 48)(22 165 208 49)(23 166 209 50)(24 167 210 51)(25 168 211 52)(26 141 212 53)(27 142 213 54)(28 143 214 55)(57 134 177 102)(58 135 178 103)(59 136 179 104)(60 137 180 105)(61 138 181 106)(62 139 182 107)(63 140 183 108)(64 113 184 109)(65 114 185 110)(66 115 186 111)(67 116 187 112)(68 117 188 85)(69 118 189 86)(70 119 190 87)(71 120 191 88)(72 121 192 89)(73 122 193 90)(74 123 194 91)(75 124 195 92)(76 125 196 93)(77 126 169 94)(78 127 170 95)(79 128 171 96)(80 129 172 97)(81 130 173 98)(82 131 174 99)(83 132 175 100)(84 133 176 101)
(1 129)(2 130)(3 131)(4 132)(5 133)(6 134)(7 135)(8 136)(9 137)(10 138)(11 139)(12 140)(13 113)(14 114)(15 115)(16 116)(17 117)(18 118)(19 119)(20 120)(21 121)(22 122)(23 123)(24 124)(25 125)(26 126)(27 127)(28 128)(29 173)(30 174)(31 175)(32 176)(33 177)(34 178)(35 179)(36 180)(37 181)(38 182)(39 183)(40 184)(41 185)(42 186)(43 187)(44 188)(45 189)(46 190)(47 191)(48 192)(49 193)(50 194)(51 195)(52 196)(53 169)(54 170)(55 171)(56 172)(57 149)(58 150)(59 151)(60 152)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 161)(70 162)(71 163)(72 164)(73 165)(74 166)(75 167)(76 168)(77 141)(78 142)(79 143)(80 144)(81 145)(82 146)(83 147)(84 148)(85 203)(86 204)(87 205)(88 206)(89 207)(90 208)(91 209)(92 210)(93 211)(94 212)(95 213)(96 214)(97 215)(98 216)(99 217)(100 218)(101 219)(102 220)(103 221)(104 222)(105 223)(106 224)(107 197)(108 198)(109 199)(110 200)(111 201)(112 202)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,221)(2,220)(3,219)(4,218)(5,217)(6,216)(7,215)(8,214)(9,213)(10,212)(11,211)(12,210)(13,209)(14,208)(15,207)(16,206)(17,205)(18,204)(19,203)(20,202)(21,201)(22,200)(23,199)(24,198)(25,197)(26,224)(27,223)(28,222)(29,149)(30,148)(31,147)(32,146)(33,145)(34,144)(35,143)(36,142)(37,141)(38,168)(39,167)(40,166)(41,165)(42,164)(43,163)(44,162)(45,161)(46,160)(47,159)(48,158)(49,157)(50,156)(51,155)(52,154)(53,153)(54,152)(55,151)(56,150)(57,187)(58,186)(59,185)(60,184)(61,183)(62,182)(63,181)(64,180)(65,179)(66,178)(67,177)(68,176)(69,175)(70,174)(71,173)(72,172)(73,171)(74,170)(75,169)(76,196)(77,195)(78,194)(79,193)(80,192)(81,191)(82,190)(83,189)(84,188)(85,133)(86,132)(87,131)(88,130)(89,129)(90,128)(91,127)(92,126)(93,125)(94,124)(95,123)(96,122)(97,121)(98,120)(99,119)(100,118)(101,117)(102,116)(103,115)(104,114)(105,113)(106,140)(107,139)(108,138)(109,137)(110,136)(111,135)(112,134), (1,144,215,56)(2,145,216,29)(3,146,217,30)(4,147,218,31)(5,148,219,32)(6,149,220,33)(7,150,221,34)(8,151,222,35)(9,152,223,36)(10,153,224,37)(11,154,197,38)(12,155,198,39)(13,156,199,40)(14,157,200,41)(15,158,201,42)(16,159,202,43)(17,160,203,44)(18,161,204,45)(19,162,205,46)(20,163,206,47)(21,164,207,48)(22,165,208,49)(23,166,209,50)(24,167,210,51)(25,168,211,52)(26,141,212,53)(27,142,213,54)(28,143,214,55)(57,134,177,102)(58,135,178,103)(59,136,179,104)(60,137,180,105)(61,138,181,106)(62,139,182,107)(63,140,183,108)(64,113,184,109)(65,114,185,110)(66,115,186,111)(67,116,187,112)(68,117,188,85)(69,118,189,86)(70,119,190,87)(71,120,191,88)(72,121,192,89)(73,122,193,90)(74,123,194,91)(75,124,195,92)(76,125,196,93)(77,126,169,94)(78,127,170,95)(79,128,171,96)(80,129,172,97)(81,130,173,98)(82,131,174,99)(83,132,175,100)(84,133,176,101), (1,129)(2,130)(3,131)(4,132)(5,133)(6,134)(7,135)(8,136)(9,137)(10,138)(11,139)(12,140)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,173)(30,174)(31,175)(32,176)(33,177)(34,178)(35,179)(36,180)(37,181)(38,182)(39,183)(40,184)(41,185)(42,186)(43,187)(44,188)(45,189)(46,190)(47,191)(48,192)(49,193)(50,194)(51,195)(52,196)(53,169)(54,170)(55,171)(56,172)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,141)(78,142)(79,143)(80,144)(81,145)(82,146)(83,147)(84,148)(85,203)(86,204)(87,205)(88,206)(89,207)(90,208)(91,209)(92,210)(93,211)(94,212)(95,213)(96,214)(97,215)(98,216)(99,217)(100,218)(101,219)(102,220)(103,221)(104,222)(105,223)(106,224)(107,197)(108,198)(109,199)(110,200)(111,201)(112,202)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,221)(2,220)(3,219)(4,218)(5,217)(6,216)(7,215)(8,214)(9,213)(10,212)(11,211)(12,210)(13,209)(14,208)(15,207)(16,206)(17,205)(18,204)(19,203)(20,202)(21,201)(22,200)(23,199)(24,198)(25,197)(26,224)(27,223)(28,222)(29,149)(30,148)(31,147)(32,146)(33,145)(34,144)(35,143)(36,142)(37,141)(38,168)(39,167)(40,166)(41,165)(42,164)(43,163)(44,162)(45,161)(46,160)(47,159)(48,158)(49,157)(50,156)(51,155)(52,154)(53,153)(54,152)(55,151)(56,150)(57,187)(58,186)(59,185)(60,184)(61,183)(62,182)(63,181)(64,180)(65,179)(66,178)(67,177)(68,176)(69,175)(70,174)(71,173)(72,172)(73,171)(74,170)(75,169)(76,196)(77,195)(78,194)(79,193)(80,192)(81,191)(82,190)(83,189)(84,188)(85,133)(86,132)(87,131)(88,130)(89,129)(90,128)(91,127)(92,126)(93,125)(94,124)(95,123)(96,122)(97,121)(98,120)(99,119)(100,118)(101,117)(102,116)(103,115)(104,114)(105,113)(106,140)(107,139)(108,138)(109,137)(110,136)(111,135)(112,134), (1,144,215,56)(2,145,216,29)(3,146,217,30)(4,147,218,31)(5,148,219,32)(6,149,220,33)(7,150,221,34)(8,151,222,35)(9,152,223,36)(10,153,224,37)(11,154,197,38)(12,155,198,39)(13,156,199,40)(14,157,200,41)(15,158,201,42)(16,159,202,43)(17,160,203,44)(18,161,204,45)(19,162,205,46)(20,163,206,47)(21,164,207,48)(22,165,208,49)(23,166,209,50)(24,167,210,51)(25,168,211,52)(26,141,212,53)(27,142,213,54)(28,143,214,55)(57,134,177,102)(58,135,178,103)(59,136,179,104)(60,137,180,105)(61,138,181,106)(62,139,182,107)(63,140,183,108)(64,113,184,109)(65,114,185,110)(66,115,186,111)(67,116,187,112)(68,117,188,85)(69,118,189,86)(70,119,190,87)(71,120,191,88)(72,121,192,89)(73,122,193,90)(74,123,194,91)(75,124,195,92)(76,125,196,93)(77,126,169,94)(78,127,170,95)(79,128,171,96)(80,129,172,97)(81,130,173,98)(82,131,174,99)(83,132,175,100)(84,133,176,101), (1,129)(2,130)(3,131)(4,132)(5,133)(6,134)(7,135)(8,136)(9,137)(10,138)(11,139)(12,140)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,173)(30,174)(31,175)(32,176)(33,177)(34,178)(35,179)(36,180)(37,181)(38,182)(39,183)(40,184)(41,185)(42,186)(43,187)(44,188)(45,189)(46,190)(47,191)(48,192)(49,193)(50,194)(51,195)(52,196)(53,169)(54,170)(55,171)(56,172)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,141)(78,142)(79,143)(80,144)(81,145)(82,146)(83,147)(84,148)(85,203)(86,204)(87,205)(88,206)(89,207)(90,208)(91,209)(92,210)(93,211)(94,212)(95,213)(96,214)(97,215)(98,216)(99,217)(100,218)(101,219)(102,220)(103,221)(104,222)(105,223)(106,224)(107,197)(108,198)(109,199)(110,200)(111,201)(112,202) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,221),(2,220),(3,219),(4,218),(5,217),(6,216),(7,215),(8,214),(9,213),(10,212),(11,211),(12,210),(13,209),(14,208),(15,207),(16,206),(17,205),(18,204),(19,203),(20,202),(21,201),(22,200),(23,199),(24,198),(25,197),(26,224),(27,223),(28,222),(29,149),(30,148),(31,147),(32,146),(33,145),(34,144),(35,143),(36,142),(37,141),(38,168),(39,167),(40,166),(41,165),(42,164),(43,163),(44,162),(45,161),(46,160),(47,159),(48,158),(49,157),(50,156),(51,155),(52,154),(53,153),(54,152),(55,151),(56,150),(57,187),(58,186),(59,185),(60,184),(61,183),(62,182),(63,181),(64,180),(65,179),(66,178),(67,177),(68,176),(69,175),(70,174),(71,173),(72,172),(73,171),(74,170),(75,169),(76,196),(77,195),(78,194),(79,193),(80,192),(81,191),(82,190),(83,189),(84,188),(85,133),(86,132),(87,131),(88,130),(89,129),(90,128),(91,127),(92,126),(93,125),(94,124),(95,123),(96,122),(97,121),(98,120),(99,119),(100,118),(101,117),(102,116),(103,115),(104,114),(105,113),(106,140),(107,139),(108,138),(109,137),(110,136),(111,135),(112,134)], [(1,144,215,56),(2,145,216,29),(3,146,217,30),(4,147,218,31),(5,148,219,32),(6,149,220,33),(7,150,221,34),(8,151,222,35),(9,152,223,36),(10,153,224,37),(11,154,197,38),(12,155,198,39),(13,156,199,40),(14,157,200,41),(15,158,201,42),(16,159,202,43),(17,160,203,44),(18,161,204,45),(19,162,205,46),(20,163,206,47),(21,164,207,48),(22,165,208,49),(23,166,209,50),(24,167,210,51),(25,168,211,52),(26,141,212,53),(27,142,213,54),(28,143,214,55),(57,134,177,102),(58,135,178,103),(59,136,179,104),(60,137,180,105),(61,138,181,106),(62,139,182,107),(63,140,183,108),(64,113,184,109),(65,114,185,110),(66,115,186,111),(67,116,187,112),(68,117,188,85),(69,118,189,86),(70,119,190,87),(71,120,191,88),(72,121,192,89),(73,122,193,90),(74,123,194,91),(75,124,195,92),(76,125,196,93),(77,126,169,94),(78,127,170,95),(79,128,171,96),(80,129,172,97),(81,130,173,98),(82,131,174,99),(83,132,175,100),(84,133,176,101)], [(1,129),(2,130),(3,131),(4,132),(5,133),(6,134),(7,135),(8,136),(9,137),(10,138),(11,139),(12,140),(13,113),(14,114),(15,115),(16,116),(17,117),(18,118),(19,119),(20,120),(21,121),(22,122),(23,123),(24,124),(25,125),(26,126),(27,127),(28,128),(29,173),(30,174),(31,175),(32,176),(33,177),(34,178),(35,179),(36,180),(37,181),(38,182),(39,183),(40,184),(41,185),(42,186),(43,187),(44,188),(45,189),(46,190),(47,191),(48,192),(49,193),(50,194),(51,195),(52,196),(53,169),(54,170),(55,171),(56,172),(57,149),(58,150),(59,151),(60,152),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,161),(70,162),(71,163),(72,164),(73,165),(74,166),(75,167),(76,168),(77,141),(78,142),(79,143),(80,144),(81,145),(82,146),(83,147),(84,148),(85,203),(86,204),(87,205),(88,206),(89,207),(90,208),(91,209),(92,210),(93,211),(94,212),(95,213),(96,214),(97,215),(98,216),(99,217),(100,218),(101,219),(102,220),(103,221),(104,222),(105,223),(106,224),(107,197),(108,198),(109,199),(110,200),(111,201),(112,202)])

Matrix representation G ⊆ GL6(𝔽29)

1420000
3150000
0011800
00112500
0000280
0000028
,
2800000
1410000
0028000
0018100
0000280
0000028
,
100000
010000
0028000
0002800
0000117
0000528
,
23240000
760000
001000
000100
00002327
000036

G:=sub<GL(6,GF(29))| [14,3,0,0,0,0,2,15,0,0,0,0,0,0,1,11,0,0,0,0,18,25,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,14,0,0,0,0,0,1,0,0,0,0,0,0,28,18,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,5,0,0,0,0,17,28],[23,7,0,0,0,0,24,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,23,3,0,0,0,0,27,6] >;

85 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J···4O7A7B7C14A···14I14J···14U28A···28L28M···28AJ
order12222222224···444···477714···1414···1428···2828···28
size111144141414142···2428···282222···24···42···24···4

85 irreducible representations

dim111111111222222222444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D14D14C4○D282- (1+4)D4×D7D4.10D14
kernelD2824D4C282Q8C4×D28D14.D4D7×C4⋊C4C28.48D4C282D4D4×C28C2×C4○D28D28C4×D4C28C42C22⋊C4C4⋊C4C22×C4C2×D4C4C14C4C2
# reps1114222124343636324166

In GAP, Magma, Sage, TeX

D_{28}\rtimes_{24}D_4
% in TeX

G:=Group("D28:24D4");
// GroupNames label

G:=SmallGroup(448,1004);
// by ID

G=gap.SmallGroup(448,1004);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,387,100,675,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^14*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽