direct product, metabelian, soluble, monomial
Aliases: Q8×F8, C4.(C2×F8), (C4×F8).C2, (Q8×C23)⋊C7, C23⋊(C7×Q8), (C23×C4).C14, C2.3(C22×F8), C24.3(C2×C14), (C2×F8).3C22, SmallGroup(448,1364)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 479 in 83 conjugacy classes, 18 normal (9 characteristic)
C1, C2, C2 [×2], C4 [×3], C4 [×3], C22 [×5], C7, C2×C4 [×12], Q8, Q8 [×9], C23, C23 [×2], C14, C22×C4 [×6], C2×Q8 [×16], C24, C28 [×3], C23×C4 [×3], C22×Q8 [×4], C7×Q8, F8, Q8×C23, C2×F8, C4×F8 [×3], Q8×F8
Quotients:
C1, C2 [×3], C22, C7, Q8, C14 [×3], C2×C14, C7×Q8, F8, C2×F8 [×3], C22×F8, Q8×F8
Generators and relations
G = < a,b,c,d,e,f | a4=c2=d2=e2=f7=1, b2=a2, bab-1=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=ed=de, fdf-1=c, fef-1=d >
(1 29 15 24)(2 30 16 25)(3 31 17 26)(4 32 18 27)(5 33 19 28)(6 34 20 22)(7 35 21 23)(8 41 55 46)(9 42 56 47)(10 36 50 48)(11 37 51 49)(12 38 52 43)(13 39 53 44)(14 40 54 45)
(1 43 15 38)(2 44 16 39)(3 45 17 40)(4 46 18 41)(5 47 19 42)(6 48 20 36)(7 49 21 37)(8 32 55 27)(9 33 56 28)(10 34 50 22)(11 35 51 23)(12 29 52 24)(13 30 53 25)(14 31 54 26)
(1 15)(4 18)(6 20)(7 21)(8 55)(10 50)(11 51)(12 52)(22 34)(23 35)(24 29)(27 32)(36 48)(37 49)(38 43)(41 46)
(1 15)(2 16)(5 19)(7 21)(9 56)(11 51)(12 52)(13 53)(23 35)(24 29)(25 30)(28 33)(37 49)(38 43)(39 44)(42 47)
(1 15)(2 16)(3 17)(6 20)(10 50)(12 52)(13 53)(14 54)(22 34)(24 29)(25 30)(26 31)(36 48)(38 43)(39 44)(40 45)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
G:=sub<Sym(56)| (1,29,15,24)(2,30,16,25)(3,31,17,26)(4,32,18,27)(5,33,19,28)(6,34,20,22)(7,35,21,23)(8,41,55,46)(9,42,56,47)(10,36,50,48)(11,37,51,49)(12,38,52,43)(13,39,53,44)(14,40,54,45), (1,43,15,38)(2,44,16,39)(3,45,17,40)(4,46,18,41)(5,47,19,42)(6,48,20,36)(7,49,21,37)(8,32,55,27)(9,33,56,28)(10,34,50,22)(11,35,51,23)(12,29,52,24)(13,30,53,25)(14,31,54,26), (1,15)(4,18)(6,20)(7,21)(8,55)(10,50)(11,51)(12,52)(22,34)(23,35)(24,29)(27,32)(36,48)(37,49)(38,43)(41,46), (1,15)(2,16)(5,19)(7,21)(9,56)(11,51)(12,52)(13,53)(23,35)(24,29)(25,30)(28,33)(37,49)(38,43)(39,44)(42,47), (1,15)(2,16)(3,17)(6,20)(10,50)(12,52)(13,53)(14,54)(22,34)(24,29)(25,30)(26,31)(36,48)(38,43)(39,44)(40,45), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)>;
G:=Group( (1,29,15,24)(2,30,16,25)(3,31,17,26)(4,32,18,27)(5,33,19,28)(6,34,20,22)(7,35,21,23)(8,41,55,46)(9,42,56,47)(10,36,50,48)(11,37,51,49)(12,38,52,43)(13,39,53,44)(14,40,54,45), (1,43,15,38)(2,44,16,39)(3,45,17,40)(4,46,18,41)(5,47,19,42)(6,48,20,36)(7,49,21,37)(8,32,55,27)(9,33,56,28)(10,34,50,22)(11,35,51,23)(12,29,52,24)(13,30,53,25)(14,31,54,26), (1,15)(4,18)(6,20)(7,21)(8,55)(10,50)(11,51)(12,52)(22,34)(23,35)(24,29)(27,32)(36,48)(37,49)(38,43)(41,46), (1,15)(2,16)(5,19)(7,21)(9,56)(11,51)(12,52)(13,53)(23,35)(24,29)(25,30)(28,33)(37,49)(38,43)(39,44)(42,47), (1,15)(2,16)(3,17)(6,20)(10,50)(12,52)(13,53)(14,54)(22,34)(24,29)(25,30)(26,31)(36,48)(38,43)(39,44)(40,45), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56) );
G=PermutationGroup([(1,29,15,24),(2,30,16,25),(3,31,17,26),(4,32,18,27),(5,33,19,28),(6,34,20,22),(7,35,21,23),(8,41,55,46),(9,42,56,47),(10,36,50,48),(11,37,51,49),(12,38,52,43),(13,39,53,44),(14,40,54,45)], [(1,43,15,38),(2,44,16,39),(3,45,17,40),(4,46,18,41),(5,47,19,42),(6,48,20,36),(7,49,21,37),(8,32,55,27),(9,33,56,28),(10,34,50,22),(11,35,51,23),(12,29,52,24),(13,30,53,25),(14,31,54,26)], [(1,15),(4,18),(6,20),(7,21),(8,55),(10,50),(11,51),(12,52),(22,34),(23,35),(24,29),(27,32),(36,48),(37,49),(38,43),(41,46)], [(1,15),(2,16),(5,19),(7,21),(9,56),(11,51),(12,52),(13,53),(23,35),(24,29),(25,30),(28,33),(37,49),(38,43),(39,44),(42,47)], [(1,15),(2,16),(3,17),(6,20),(10,50),(12,52),(13,53),(14,54),(22,34),(24,29),(25,30),(26,31),(36,48),(38,43),(39,44),(40,45)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)])
Matrix representation ►G ⊆ GL9(𝔽29)
15 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 28 | 28 | 28 | 28 | 28 | 28 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 28 | 28 | 28 | 28 | 28 | 28 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 28 | 28 | 28 | 28 | 28 | 28 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 |
0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 |
G:=sub<GL(9,GF(29))| [15,21,0,0,0,0,0,0,0,21,14,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28],[0,1,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,28,0,0,0,0,0,0,0,0,28,1,0,0,0,0,0,0,0,28,0,1,0,0,1,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,1,0,0,28,0,0,0,0,0,0,1,0,28,0,0],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,28,0,0,1,0,0,0,0,0,28,1,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,1,28,0,0,0,0,0,0,0,0,28,0,0,0,1,0,0,1,0,28,0,0,0,0,0,0,0,0,28,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,1,0,0,28,0,0,0,0,1,0,0,0,28,0,0,0,1,0,0,0,0,28,0,0,1,0,0,0,0,0,28,0,1,0,0,0,0,0,0,28,1,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,25,0,0,0,4,0,0,0,0,0,0,25,0,4,0,0,0,0,0,0,0,25,4,0,0,0,0,0,0,0,0,4,25,0,0,0,0,0,0,0,4,0,25,0,0,0,0,0,0,4,0,0,0,0,0,25,0,0,4,0,0] >;
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 7A | ··· | 7F | 14A | ··· | 14F | 28A | ··· | 28R |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 7 | 7 | 2 | 2 | 2 | 14 | 14 | 14 | 8 | ··· | 8 | 8 | ··· | 8 | 16 | ··· | 16 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 14 | 2 | 2 | 7 | 7 |
type | + | + | - | - | + | + | |||
image | C1 | C2 | C7 | C14 | Q8×F8 | Q8 | C7×Q8 | F8 | C2×F8 |
kernel | Q8×F8 | C4×F8 | Q8×C23 | C23×C4 | C1 | F8 | C23 | Q8 | C4 |
# reps | 1 | 3 | 6 | 18 | 1 | 1 | 6 | 1 | 3 |
In GAP, Magma, Sage, TeX
Q_8\times F_8
% in TeX
G:=Group("Q8xF8");
// GroupNames label
G:=SmallGroup(448,1364);
// by ID
G=gap.SmallGroup(448,1364);
# by ID
G:=PCGroup([7,-2,-2,-7,-2,-2,2,2,196,421,204,998,2371,3450]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=c^2=d^2=e^2=f^7=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=e*d=d*e,f*d*f^-1=c,f*e*f^-1=d>;
// generators/relations