Extensions 1→N→G→Q→1 with N=C2×Dic28 and Q=C2

Direct product G=N×Q with N=C2×Dic28 and Q=C2
dρLabelID
C22×Dic28448C2^2xDic28448,1195

Semidirect products G=N:Q with N=C2×Dic28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic28)⋊1C2 = C8.8D28φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):1C2448,230
(C2×Dic28)⋊2C2 = D28.32D4φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):2C2448,267
(C2×Dic28)⋊3C2 = C22⋊Dic28φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):3C2448,273
(C2×Dic28)⋊4C2 = Dic14.D4φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):4C2448,301
(C2×Dic28)⋊5C2 = D4.D28φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):5C2448,317
(C2×Dic28)⋊6C2 = D144Q16φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):6C2448,342
(C2×Dic28)⋊7C2 = C42.36D14φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):7C2448,379
(C2×Dic28)⋊8C2 = C2×C112⋊C2φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):8C2448,437
(C2×Dic28)⋊9C2 = C56.82D4φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):9C2448,650
(C2×Dic28)⋊10C2 = C8.D28φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):10C2448,249
(C2×Dic28)⋊11C2 = C16.D14φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28):11C2448,443
(C2×Dic28)⋊12C2 = C56.4D4φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):12C2448,671
(C2×Dic28)⋊13C2 = D4.5D28φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28):13C2448,677
(C2×Dic28)⋊14C2 = C2×C8.D14φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):14C2448,1200
(C2×Dic28)⋊15C2 = D4.13D28φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28):15C2448,1206
(C2×Dic28)⋊16C2 = D142Q16φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):16C2448,421
(C2×Dic28)⋊17C2 = C2×D8.D7φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):17C2448,682
(C2×Dic28)⋊18C2 = C56.22D4φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):18C2448,689
(C2×Dic28)⋊19C2 = C2×D83D7φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):19C2448,1209
(C2×Dic28)⋊20C2 = C2×D7×Q16φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):20C2448,1216
(C2×Dic28)⋊21C2 = C8.20D28φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28):21C2448,430
(C2×Dic28)⋊22C2 = C56.31C23φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28):22C2448,729
(C2×Dic28)⋊23C2 = D8.10D14φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28):23C2448,1224
(C2×Dic28)⋊24C2 = C8.2D28φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):24C2448,402
(C2×Dic28)⋊25C2 = C56.31D4φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):25C2448,701
(C2×Dic28)⋊26C2 = C2×SD16⋊D7φ: C2/C1C2 ⊆ Out C2×Dic28224(C2xDic28):26C2448,1213
(C2×Dic28)⋊27C2 = C2×D567C2φ: trivial image224(C2xDic28):27C2448,1194

Non-split extensions G=N.Q with N=C2×Dic28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic28).1C2 = C56.78D4φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).1C2448,60
(C2×Dic28).2C2 = C284Q16φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).2C2448,233
(C2×Dic28).3C2 = Dic7⋊Q16φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).3C2448,327
(C2×Dic28).4C2 = C4⋊Dic28φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).4C2448,383
(C2×Dic28).5C2 = C2×Dic56φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).5C2448,439
(C2×Dic28).6C2 = C28.4D8φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28).6C2448,74
(C2×Dic28).7C2 = Dic28⋊C4φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).7C2448,250
(C2×Dic28).8C2 = C56.6D4φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).8C2448,49
(C2×Dic28).9C2 = Dic286C4φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).9C2448,407
(C2×Dic28).10C2 = C2×C7⋊Q32φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).10C2448,714
(C2×Dic28).11C2 = C56.26D4φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).11C2448,715
(C2×Dic28).12C2 = C56.8D4φ: C2/C1C2 ⊆ Out C2×Dic282244-(C2xDic28).12C2448,53
(C2×Dic28).13C2 = Dic289C4φ: C2/C1C2 ⊆ Out C2×Dic28448(C2xDic28).13C2448,387
(C2×Dic28).14C2 = C4×Dic28φ: trivial image448(C2xDic28).14C2448,232

׿
×
𝔽