metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.13D28, Q8.13D28, C28.63C24, C56.12C23, D56.14C22, D28.26C23, M4(2).28D14, Dic28.10C22, Dic14.26C23, C8○D4⋊5D7, C7⋊1(Q8○D8), (C7×D4).25D4, C28.75(C2×D4), C4.29(C2×D28), (C7×Q8).25D4, C4○D4.40D14, (C2×C8).102D14, D56⋊7C2⋊13C2, C8.54(C22×D7), C22.5(C2×D28), C4.60(C23×D7), (C2×Dic28)⋊15C2, C8.D14⋊12C2, (C2×C56).70C22, C56⋊C2.2C22, C2.32(C22×D28), C14.30(C22×D4), D4.10D14⋊4C2, (C2×C28).517C23, C4○D28.27C22, (C7×M4(2)).30C22, (C2×Dic14).194C22, (C7×C8○D4)⋊5C2, (C2×C14).10(C2×D4), (C7×C4○D4).47C22, (C2×C4).228(C22×D7), SmallGroup(448,1206)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4.13D28
G = < a,b,c,d | a4=b2=d2=1, c28=a2, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=a2c27 >
Subgroups: 1180 in 248 conjugacy classes, 107 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C2×C8, M4(2), D8, SD16, Q16, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C8○D4, C2×Q16, C4○D8, C8.C22, 2- 1+4, C56, C56, Dic14, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C7×Q8, Q8○D8, C56⋊C2, D56, Dic28, C2×C56, C7×M4(2), C2×Dic14, C4○D28, D4⋊2D7, Q8×D7, C7×C4○D4, D56⋊7C2, C2×Dic28, C8.D14, C7×C8○D4, D4.10D14, D4.13D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, D28, C22×D7, Q8○D8, C2×D28, C23×D7, C22×D28, D4.13D28
(1 60 29 88)(2 61 30 89)(3 62 31 90)(4 63 32 91)(5 64 33 92)(6 65 34 93)(7 66 35 94)(8 67 36 95)(9 68 37 96)(10 69 38 97)(11 70 39 98)(12 71 40 99)(13 72 41 100)(14 73 42 101)(15 74 43 102)(16 75 44 103)(17 76 45 104)(18 77 46 105)(19 78 47 106)(20 79 48 107)(21 80 49 108)(22 81 50 109)(23 82 51 110)(24 83 52 111)(25 84 53 112)(26 85 54 57)(27 86 55 58)(28 87 56 59)(113 206 141 178)(114 207 142 179)(115 208 143 180)(116 209 144 181)(117 210 145 182)(118 211 146 183)(119 212 147 184)(120 213 148 185)(121 214 149 186)(122 215 150 187)(123 216 151 188)(124 217 152 189)(125 218 153 190)(126 219 154 191)(127 220 155 192)(128 221 156 193)(129 222 157 194)(130 223 158 195)(131 224 159 196)(132 169 160 197)(133 170 161 198)(134 171 162 199)(135 172 163 200)(136 173 164 201)(137 174 165 202)(138 175 166 203)(139 176 167 204)(140 177 168 205)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 147)(2 146)(3 145)(4 144)(5 143)(6 142)(7 141)(8 140)(9 139)(10 138)(11 137)(12 136)(13 135)(14 134)(15 133)(16 132)(17 131)(18 130)(19 129)(20 128)(21 127)(22 126)(23 125)(24 124)(25 123)(26 122)(27 121)(28 120)(29 119)(30 118)(31 117)(32 116)(33 115)(34 114)(35 113)(36 168)(37 167)(38 166)(39 165)(40 164)(41 163)(42 162)(43 161)(44 160)(45 159)(46 158)(47 157)(48 156)(49 155)(50 154)(51 153)(52 152)(53 151)(54 150)(55 149)(56 148)(57 187)(58 186)(59 185)(60 184)(61 183)(62 182)(63 181)(64 180)(65 179)(66 178)(67 177)(68 176)(69 175)(70 174)(71 173)(72 172)(73 171)(74 170)(75 169)(76 224)(77 223)(78 222)(79 221)(80 220)(81 219)(82 218)(83 217)(84 216)(85 215)(86 214)(87 213)(88 212)(89 211)(90 210)(91 209)(92 208)(93 207)(94 206)(95 205)(96 204)(97 203)(98 202)(99 201)(100 200)(101 199)(102 198)(103 197)(104 196)(105 195)(106 194)(107 193)(108 192)(109 191)(110 190)(111 189)(112 188)
G:=sub<Sym(224)| (1,60,29,88)(2,61,30,89)(3,62,31,90)(4,63,32,91)(5,64,33,92)(6,65,34,93)(7,66,35,94)(8,67,36,95)(9,68,37,96)(10,69,38,97)(11,70,39,98)(12,71,40,99)(13,72,41,100)(14,73,42,101)(15,74,43,102)(16,75,44,103)(17,76,45,104)(18,77,46,105)(19,78,47,106)(20,79,48,107)(21,80,49,108)(22,81,50,109)(23,82,51,110)(24,83,52,111)(25,84,53,112)(26,85,54,57)(27,86,55,58)(28,87,56,59)(113,206,141,178)(114,207,142,179)(115,208,143,180)(116,209,144,181)(117,210,145,182)(118,211,146,183)(119,212,147,184)(120,213,148,185)(121,214,149,186)(122,215,150,187)(123,216,151,188)(124,217,152,189)(125,218,153,190)(126,219,154,191)(127,220,155,192)(128,221,156,193)(129,222,157,194)(130,223,158,195)(131,224,159,196)(132,169,160,197)(133,170,161,198)(134,171,162,199)(135,172,163,200)(136,173,164,201)(137,174,165,202)(138,175,166,203)(139,176,167,204)(140,177,168,205), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,147)(2,146)(3,145)(4,144)(5,143)(6,142)(7,141)(8,140)(9,139)(10,138)(11,137)(12,136)(13,135)(14,134)(15,133)(16,132)(17,131)(18,130)(19,129)(20,128)(21,127)(22,126)(23,125)(24,124)(25,123)(26,122)(27,121)(28,120)(29,119)(30,118)(31,117)(32,116)(33,115)(34,114)(35,113)(36,168)(37,167)(38,166)(39,165)(40,164)(41,163)(42,162)(43,161)(44,160)(45,159)(46,158)(47,157)(48,156)(49,155)(50,154)(51,153)(52,152)(53,151)(54,150)(55,149)(56,148)(57,187)(58,186)(59,185)(60,184)(61,183)(62,182)(63,181)(64,180)(65,179)(66,178)(67,177)(68,176)(69,175)(70,174)(71,173)(72,172)(73,171)(74,170)(75,169)(76,224)(77,223)(78,222)(79,221)(80,220)(81,219)(82,218)(83,217)(84,216)(85,215)(86,214)(87,213)(88,212)(89,211)(90,210)(91,209)(92,208)(93,207)(94,206)(95,205)(96,204)(97,203)(98,202)(99,201)(100,200)(101,199)(102,198)(103,197)(104,196)(105,195)(106,194)(107,193)(108,192)(109,191)(110,190)(111,189)(112,188)>;
G:=Group( (1,60,29,88)(2,61,30,89)(3,62,31,90)(4,63,32,91)(5,64,33,92)(6,65,34,93)(7,66,35,94)(8,67,36,95)(9,68,37,96)(10,69,38,97)(11,70,39,98)(12,71,40,99)(13,72,41,100)(14,73,42,101)(15,74,43,102)(16,75,44,103)(17,76,45,104)(18,77,46,105)(19,78,47,106)(20,79,48,107)(21,80,49,108)(22,81,50,109)(23,82,51,110)(24,83,52,111)(25,84,53,112)(26,85,54,57)(27,86,55,58)(28,87,56,59)(113,206,141,178)(114,207,142,179)(115,208,143,180)(116,209,144,181)(117,210,145,182)(118,211,146,183)(119,212,147,184)(120,213,148,185)(121,214,149,186)(122,215,150,187)(123,216,151,188)(124,217,152,189)(125,218,153,190)(126,219,154,191)(127,220,155,192)(128,221,156,193)(129,222,157,194)(130,223,158,195)(131,224,159,196)(132,169,160,197)(133,170,161,198)(134,171,162,199)(135,172,163,200)(136,173,164,201)(137,174,165,202)(138,175,166,203)(139,176,167,204)(140,177,168,205), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,147)(2,146)(3,145)(4,144)(5,143)(6,142)(7,141)(8,140)(9,139)(10,138)(11,137)(12,136)(13,135)(14,134)(15,133)(16,132)(17,131)(18,130)(19,129)(20,128)(21,127)(22,126)(23,125)(24,124)(25,123)(26,122)(27,121)(28,120)(29,119)(30,118)(31,117)(32,116)(33,115)(34,114)(35,113)(36,168)(37,167)(38,166)(39,165)(40,164)(41,163)(42,162)(43,161)(44,160)(45,159)(46,158)(47,157)(48,156)(49,155)(50,154)(51,153)(52,152)(53,151)(54,150)(55,149)(56,148)(57,187)(58,186)(59,185)(60,184)(61,183)(62,182)(63,181)(64,180)(65,179)(66,178)(67,177)(68,176)(69,175)(70,174)(71,173)(72,172)(73,171)(74,170)(75,169)(76,224)(77,223)(78,222)(79,221)(80,220)(81,219)(82,218)(83,217)(84,216)(85,215)(86,214)(87,213)(88,212)(89,211)(90,210)(91,209)(92,208)(93,207)(94,206)(95,205)(96,204)(97,203)(98,202)(99,201)(100,200)(101,199)(102,198)(103,197)(104,196)(105,195)(106,194)(107,193)(108,192)(109,191)(110,190)(111,189)(112,188) );
G=PermutationGroup([[(1,60,29,88),(2,61,30,89),(3,62,31,90),(4,63,32,91),(5,64,33,92),(6,65,34,93),(7,66,35,94),(8,67,36,95),(9,68,37,96),(10,69,38,97),(11,70,39,98),(12,71,40,99),(13,72,41,100),(14,73,42,101),(15,74,43,102),(16,75,44,103),(17,76,45,104),(18,77,46,105),(19,78,47,106),(20,79,48,107),(21,80,49,108),(22,81,50,109),(23,82,51,110),(24,83,52,111),(25,84,53,112),(26,85,54,57),(27,86,55,58),(28,87,56,59),(113,206,141,178),(114,207,142,179),(115,208,143,180),(116,209,144,181),(117,210,145,182),(118,211,146,183),(119,212,147,184),(120,213,148,185),(121,214,149,186),(122,215,150,187),(123,216,151,188),(124,217,152,189),(125,218,153,190),(126,219,154,191),(127,220,155,192),(128,221,156,193),(129,222,157,194),(130,223,158,195),(131,224,159,196),(132,169,160,197),(133,170,161,198),(134,171,162,199),(135,172,163,200),(136,173,164,201),(137,174,165,202),(138,175,166,203),(139,176,167,204),(140,177,168,205)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,147),(2,146),(3,145),(4,144),(5,143),(6,142),(7,141),(8,140),(9,139),(10,138),(11,137),(12,136),(13,135),(14,134),(15,133),(16,132),(17,131),(18,130),(19,129),(20,128),(21,127),(22,126),(23,125),(24,124),(25,123),(26,122),(27,121),(28,120),(29,119),(30,118),(31,117),(32,116),(33,115),(34,114),(35,113),(36,168),(37,167),(38,166),(39,165),(40,164),(41,163),(42,162),(43,161),(44,160),(45,159),(46,158),(47,157),(48,156),(49,155),(50,154),(51,153),(52,152),(53,151),(54,150),(55,149),(56,148),(57,187),(58,186),(59,185),(60,184),(61,183),(62,182),(63,181),(64,180),(65,179),(66,178),(67,177),(68,176),(69,175),(70,174),(71,173),(72,172),(73,171),(74,170),(75,169),(76,224),(77,223),(78,222),(79,221),(80,220),(81,219),(82,218),(83,217),(84,216),(85,215),(86,214),(87,213),(88,212),(89,211),(90,210),(91,209),(92,208),(93,207),(94,206),(95,205),(96,204),(97,203),(98,202),(99,201),(100,200),(101,199),(102,198),(103,197),(104,196),(105,195),(106,194),(107,193),(108,192),(109,191),(110,190),(111,189),(112,188)]])
82 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 14A | 14B | 14C | 14D | ··· | 14L | 28A | ··· | 28F | 28G | ··· | 28O | 56A | ··· | 56L | 56M | ··· | 56AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 2 | 2 | 28 | 28 | 2 | 2 | 2 | 2 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | D14 | D14 | D14 | D28 | D28 | Q8○D8 | D4.13D28 |
kernel | D4.13D28 | D56⋊7C2 | C2×Dic28 | C8.D14 | C7×C8○D4 | D4.10D14 | C7×D4 | C7×Q8 | C8○D4 | C2×C8 | M4(2) | C4○D4 | D4 | Q8 | C7 | C1 |
# reps | 1 | 3 | 3 | 6 | 1 | 2 | 3 | 1 | 3 | 9 | 9 | 3 | 18 | 6 | 2 | 12 |
Matrix representation of D4.13D28 ►in GL4(𝔽113) generated by
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
112 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
112 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
96 | 35 | 0 | 0 |
78 | 72 | 0 | 0 |
0 | 0 | 96 | 35 |
0 | 0 | 78 | 72 |
0 | 0 | 3 | 55 |
0 | 0 | 82 | 110 |
110 | 58 | 0 | 0 |
31 | 3 | 0 | 0 |
G:=sub<GL(4,GF(113))| [0,0,112,0,0,0,0,112,1,0,0,0,0,1,0,0],[112,0,0,0,0,112,0,0,0,0,1,0,0,0,0,1],[96,78,0,0,35,72,0,0,0,0,96,78,0,0,35,72],[0,0,110,31,0,0,58,3,3,82,0,0,55,110,0,0] >;
D4.13D28 in GAP, Magma, Sage, TeX
D_4._{13}D_{28}
% in TeX
G:=Group("D4.13D28");
// GroupNames label
G:=SmallGroup(448,1206);
// by ID
G=gap.SmallGroup(448,1206);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,387,184,675,192,1684,102,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^28=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=a^2*c^27>;
// generators/relations