Extensions 1→N→G→Q→1 with N=D8 and Q=C2xC14

Direct product G=NxQ with N=D8 and Q=C2xC14
dρLabelID
D8xC2xC14224D8xC2xC14448,1352

Semidirect products G=N:Q with N=D8 and Q=C2xC14
extensionφ:Q→Out NdρLabelID
D8:1(C2xC14) = C14xD16φ: C2xC14/C14C2 ⊆ Out D8224D8:1(C2xC14)448,913
D8:2(C2xC14) = C7xC16:C22φ: C2xC14/C14C2 ⊆ Out D81124D8:2(C2xC14)448,917
D8:3(C2xC14) = C14xC8:C22φ: C2xC14/C14C2 ⊆ Out D8112D8:3(C2xC14)448,1356
D8:4(C2xC14) = C7xD8:C22φ: C2xC14/C14C2 ⊆ Out D81124D8:4(C2xC14)448,1358
D8:5(C2xC14) = C7xD4oSD16φ: C2xC14/C14C2 ⊆ Out D81124D8:5(C2xC14)448,1360
D8:6(C2xC14) = C14xC4oD8φ: trivial image224D8:6(C2xC14)448,1355
D8:7(C2xC14) = C7xD4oD8φ: trivial image1124D8:7(C2xC14)448,1359

Non-split extensions G=N.Q with N=D8 and Q=C2xC14
extensionφ:Q→Out NdρLabelID
D8.1(C2xC14) = C14xSD32φ: C2xC14/C14C2 ⊆ Out D8224D8.1(C2xC14)448,914
D8.2(C2xC14) = C7xC4oD16φ: C2xC14/C14C2 ⊆ Out D82242D8.2(C2xC14)448,916
D8.3(C2xC14) = C7xQ32:C2φ: C2xC14/C14C2 ⊆ Out D82244D8.3(C2xC14)448,918
D8.4(C2xC14) = C7xQ8oD8φ: trivial image2244D8.4(C2xC14)448,1361

׿
x
:
Z
F
o
wr
Q
<