p-group, metacyclic, nilpotent (class 3), monomial
Aliases: D8, D4⋊C2, C8⋊1C2, C2.3D4, C4.1C22, 2-Sylow(PGL(2,7)), sometimes denoted D16 or Dih8 or Dih16, SmallGroup(16,7)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8
G = < a,b | a8=b2=1, bab=a-1 >
Character table of D8
class | 1 | 2A | 2B | 2C | 4 | 8A | 8B | |
size | 1 | 1 | 4 | 4 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | orthogonal faithful |
ρ7 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | orthogonal faithful |
(1 2 3 4 5 6 7 8)
(1 8)(2 7)(3 6)(4 5)
G:=sub<Sym(8)| (1,2,3,4,5,6,7,8), (1,8)(2,7)(3,6)(4,5)>;
G:=Group( (1,2,3,4,5,6,7,8), (1,8)(2,7)(3,6)(4,5) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8)], [(1,8),(2,7),(3,6),(4,5)]])
G:=TransitiveGroup(8,6);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 9)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,9),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10)]])
G:=TransitiveGroup(16,13);
D8 is a maximal subgroup of
SD32 C32⋊D8 PGL2(𝔽7) C52⋊D8
D8p: D16 D24 D40 D56 D88 D104 D136 D152 ...
D4p⋊C2: C4○D8 C8⋊C22 D4⋊S3 D4⋊D5 D4⋊D7 D4⋊D11 D4⋊D13 D4⋊D17 ...
D8 is a maximal quotient of
C2.D8 C32⋊D8 C52⋊D8
D8p: D16 D24 D40 D56 D88 D104 D136 D152 ...
C4.D2p: D4⋊C4 SD32 Q32 D4⋊S3 D4⋊D5 D4⋊D7 D4⋊D11 D4⋊D13 ...
action | f(x) | Disc(f) |
---|---|---|
8T6 | x8-2x7-14x4-16x+4 | -220·38·77 |
Matrix representation of D8 ►in GL2(𝔽7) generated by
0 | 6 |
1 | 3 |
3 | 1 |
6 | 4 |
G:=sub<GL(2,GF(7))| [0,1,6,3],[3,6,1,4] >;
D8 in GAP, Magma, Sage, TeX
D_8
% in TeX
G:=Group("D8");
// GroupNames label
G:=SmallGroup(16,7);
// by ID
G=gap.SmallGroup(16,7);
# by ID
G:=PCGroup([4,-2,2,-2,-2,49,146,78,34]);
// Polycyclic
G:=Group<a,b|a^8=b^2=1,b*a*b=a^-1>;
// generators/relations
Export