# Extensions 1→N→G→Q→1 with N=C22 and Q=D4⋊D7

Direct product G=N×Q with N=C22 and Q=D4⋊D7
dρLabelID
C22×D4⋊D7224C2^2xD4:D7448,1245

Semidirect products G=N:Q with N=C22 and Q=D4⋊D7
extensionφ:Q→Aut NdρLabelID
C221(D4⋊D7) = C7⋊C822D4φ: D4⋊D7/C7⋊C8C2 ⊆ Aut C22224C2^2:1(D4:D7)448,572
C222(D4⋊D7) = D2816D4φ: D4⋊D7/D28C2 ⊆ Aut C22112C2^2:2(D4:D7)448,570
C223(D4⋊D7) = (C2×C14)⋊8D8φ: D4⋊D7/C7×D4C2 ⊆ Aut C22112C2^2:3(D4:D7)448,751

Non-split extensions G=N.Q with N=C22 and Q=D4⋊D7
extensionφ:Q→Aut NdρLabelID
C22.1(D4⋊D7) = C56.30C23φ: D4⋊D7/C7⋊C8C2 ⊆ Aut C222244C2^2.1(D4:D7)448,728
C22.2(D4⋊D7) = (D4×C14)⋊C4φ: D4⋊D7/D28C2 ⊆ Aut C22112C2^2.2(D4:D7)448,94
C22.3(D4⋊D7) = D82Dic7φ: D4⋊D7/D28C2 ⊆ Aut C221124C2^2.3(D4:D7)448,123
C22.4(D4⋊D7) = (C2×C14).D8φ: D4⋊D7/D28C2 ⊆ Aut C22224C2^2.4(D4:D7)448,567
C22.5(D4⋊D7) = Q16⋊D14φ: D4⋊D7/D28C2 ⊆ Aut C221124+C2^2.5(D4:D7)448,727
C22.6(D4⋊D7) = C56.31C23φ: D4⋊D7/D28C2 ⊆ Aut C222244-C2^2.6(D4:D7)448,729
C22.7(D4⋊D7) = C14.C4≀C2φ: D4⋊D7/C7×D4C2 ⊆ Aut C22112C2^2.7(D4:D7)448,8
C22.8(D4⋊D7) = D568C4φ: D4⋊D7/C7×D4C2 ⊆ Aut C221124C2^2.8(D4:D7)448,45
C22.9(D4⋊D7) = (C2×C14).40D8φ: D4⋊D7/C7×D4C2 ⊆ Aut C22224C2^2.9(D4:D7)448,501
C22.10(D4⋊D7) = D8.D14φ: D4⋊D7/C7×D4C2 ⊆ Aut C221124C2^2.10(D4:D7)448,681
C22.11(D4⋊D7) = Q16.D14φ: D4⋊D7/C7×D4C2 ⊆ Aut C222244C2^2.11(D4:D7)448,713
C22.12(D4⋊D7) = C8.4Dic14central extension (φ=1)448C2^2.12(D4:D7)448,46
C22.13(D4⋊D7) = C8.5Dic14central extension (φ=1)448C2^2.13(D4:D7)448,47
C22.14(D4⋊D7) = C14.D16central extension (φ=1)224C2^2.14(D4:D7)448,48
C22.15(D4⋊D7) = C56.6D4central extension (φ=1)448C2^2.15(D4:D7)448,49
C22.16(D4⋊D7) = C28.C42central extension (φ=1)448C2^2.16(D4:D7)448,86
C22.17(D4⋊D7) = C14.SD32central extension (φ=1)224C2^2.17(D4:D7)448,119
C22.18(D4⋊D7) = C14.Q32central extension (φ=1)448C2^2.18(D4:D7)448,121
C22.19(D4⋊D7) = C2×C28.Q8central extension (φ=1)448C2^2.19(D4:D7)448,496
C22.20(D4⋊D7) = C2×C14.D8central extension (φ=1)224C2^2.20(D4:D7)448,499
C22.21(D4⋊D7) = C2×C7⋊D16central extension (φ=1)224C2^2.21(D4:D7)448,680
C22.22(D4⋊D7) = C2×D8.D7central extension (φ=1)224C2^2.22(D4:D7)448,682
C22.23(D4⋊D7) = C2×C7⋊SD32central extension (φ=1)224C2^2.23(D4:D7)448,712
C22.24(D4⋊D7) = C2×C7⋊Q32central extension (φ=1)448C2^2.24(D4:D7)448,714
C22.25(D4⋊D7) = C2×D4⋊Dic7central extension (φ=1)224C2^2.25(D4:D7)448,748

׿
×
𝔽