metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊D7, C7⋊2D8, D28⋊2C2, C4.1D14, C14.7D4, C28.1C22, C7⋊C8⋊1C2, (C7×D4)⋊1C2, C2.4(C7⋊D4), SmallGroup(112,14)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊D7
G = < a,b,c,d | a4=b2=c7=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >
Character table of D4⋊D7
class | 1 | 2A | 2B | 2C | 4 | 7A | 7B | 7C | 8A | 8B | 14A | 14B | 14C | 14D | 14E | 14F | 14G | 14H | 14I | 28A | 28B | 28C | |
size | 1 | 1 | 4 | 28 | 2 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | √2 | -√2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 2 | 0 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ8 | 2 | 2 | 2 | 0 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ9 | 2 | 2 | -2 | 0 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ74-ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ10 | 2 | 2 | -2 | 0 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ76-ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ11 | 2 | 2 | 2 | 0 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ12 | 2 | 2 | -2 | 0 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ75-ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ13 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | -√2 | √2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 0 | 0 | -2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76-ζ7 | -ζ75+ζ72 | ζ75-ζ72 | -ζ76+ζ7 | ζ74-ζ73 | -ζ74+ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | complex lifted from C7⋊D4 |
ρ15 | 2 | 2 | 0 | 0 | -2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74-ζ73 | ζ76-ζ7 | -ζ76+ζ7 | -ζ74+ζ73 | ζ75-ζ72 | -ζ75+ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | complex lifted from C7⋊D4 |
ρ16 | 2 | 2 | 0 | 0 | -2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76+ζ7 | ζ75-ζ72 | -ζ75+ζ72 | ζ76-ζ7 | -ζ74+ζ73 | ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | complex lifted from C7⋊D4 |
ρ17 | 2 | 2 | 0 | 0 | -2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74+ζ73 | -ζ76+ζ7 | ζ76-ζ7 | ζ74-ζ73 | -ζ75+ζ72 | ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | complex lifted from C7⋊D4 |
ρ18 | 2 | 2 | 0 | 0 | -2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75-ζ72 | ζ74-ζ73 | -ζ74+ζ73 | -ζ75+ζ72 | -ζ76+ζ7 | ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | complex lifted from C7⋊D4 |
ρ19 | 2 | 2 | 0 | 0 | -2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75+ζ72 | -ζ74+ζ73 | ζ74-ζ73 | ζ75-ζ72 | ζ76-ζ7 | -ζ76+ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | complex lifted from C7⋊D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 27 13 20)(2 28 14 21)(3 22 8 15)(4 23 9 16)(5 24 10 17)(6 25 11 18)(7 26 12 19)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)
(1 55)(2 56)(3 50)(4 51)(5 52)(6 53)(7 54)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 39)(26 40)(27 41)(28 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 24)(16 23)(17 22)(18 28)(19 27)(20 26)(21 25)(29 45)(30 44)(31 43)(32 49)(33 48)(34 47)(35 46)(36 52)(37 51)(38 50)(39 56)(40 55)(41 54)(42 53)
G:=sub<Sym(56)| (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,55)(2,56)(3,50)(4,51)(5,52)(6,53)(7,54)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53)>;
G:=Group( (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,55)(2,56)(3,50)(4,51)(5,52)(6,53)(7,54)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53) );
G=PermutationGroup([[(1,27,13,20),(2,28,14,21),(3,22,8,15),(4,23,9,16),(5,24,10,17),(6,25,11,18),(7,26,12,19),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56)], [(1,55),(2,56),(3,50),(4,51),(5,52),(6,53),(7,54),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,39),(26,40),(27,41),(28,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,24),(16,23),(17,22),(18,28),(19,27),(20,26),(21,25),(29,45),(30,44),(31,43),(32,49),(33,48),(34,47),(35,46),(36,52),(37,51),(38,50),(39,56),(40,55),(41,54),(42,53)]])
D4⋊D7 is a maximal subgroup of
D7×D8 D8⋊D7 D56⋊C2 SD16⋊3D7 D4.D14 D4⋊D14 D4.8D14 D4⋊F7 C21⋊D8 C7⋊D24 D4⋊D21
D4⋊D7 is a maximal quotient of
C28.Q8 C14.D8 C7⋊D16 D8.D7 C7⋊SD32 C7⋊Q32 D4⋊Dic7 C21⋊D8 C7⋊D24 D4⋊D21
Matrix representation of D4⋊D7 ►in GL4(𝔽113) generated by
0 | 1 | 0 | 0 |
112 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
82 | 31 | 0 | 0 |
31 | 31 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 112 | 1 |
0 | 0 | 87 | 25 |
1 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 87 | 1 |
G:=sub<GL(4,GF(113))| [0,112,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[82,31,0,0,31,31,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,112,87,0,0,1,25],[1,0,0,0,0,112,0,0,0,0,112,87,0,0,0,1] >;
D4⋊D7 in GAP, Magma, Sage, TeX
D_4\rtimes D_7
% in TeX
G:=Group("D4:D7");
// GroupNames label
G:=SmallGroup(112,14);
// by ID
G=gap.SmallGroup(112,14);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-7,61,182,97,42,2404]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^7=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D4⋊D7 in TeX
Character table of D4⋊D7 in TeX