Extensions 1→N→G→Q→1 with N=C2×C16 and Q=D7

Direct product G=N×Q with N=C2×C16 and Q=D7
dρLabelID
D7×C2×C16224D7xC2xC16448,433

Semidirect products G=N:Q with N=C2×C16 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C16)⋊1D7 = D14⋊C16φ: D7/C7C2 ⊆ Aut C2×C16224(C2xC16):1D7448,64
(C2×C16)⋊2D7 = D28.C8φ: D7/C7C2 ⊆ Aut C2×C162242(C2xC16):2D7448,65
(C2×C16)⋊3D7 = C2.D112φ: D7/C7C2 ⊆ Aut C2×C16224(C2xC16):3D7448,66
(C2×C16)⋊4D7 = D56.1C4φ: D7/C7C2 ⊆ Aut C2×C162242(C2xC16):4D7448,67
(C2×C16)⋊5D7 = C2×D112φ: D7/C7C2 ⊆ Aut C2×C16224(C2xC16):5D7448,436
(C2×C16)⋊6D7 = D1127C2φ: D7/C7C2 ⊆ Aut C2×C162242(C2xC16):6D7448,438
(C2×C16)⋊7D7 = C2×C112⋊C2φ: D7/C7C2 ⊆ Aut C2×C16224(C2xC16):7D7448,437
(C2×C16)⋊8D7 = C2×C16⋊D7φ: D7/C7C2 ⊆ Aut C2×C16224(C2xC16):8D7448,434
(C2×C16)⋊9D7 = D28.4C8φ: D7/C7C2 ⊆ Aut C2×C162242(C2xC16):9D7448,435

Non-split extensions G=N.Q with N=C2×C16 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C16).1D7 = Dic7⋊C16φ: D7/C7C2 ⊆ Aut C2×C16448(C2xC16).1D7448,58
(C2×C16).2D7 = C56.78D4φ: D7/C7C2 ⊆ Aut C2×C16448(C2xC16).2D7448,60
(C2×C16).3D7 = C1125C4φ: D7/C7C2 ⊆ Aut C2×C16448(C2xC16).3D7448,61
(C2×C16).4D7 = C2×Dic56φ: D7/C7C2 ⊆ Aut C2×C16448(C2xC16).4D7448,439
(C2×C16).5D7 = C112.C4φ: D7/C7C2 ⊆ Aut C2×C162242(C2xC16).5D7448,63
(C2×C16).6D7 = C1126C4φ: D7/C7C2 ⊆ Aut C2×C16448(C2xC16).6D7448,62
(C2×C16).7D7 = C7⋊M6(2)φ: D7/C7C2 ⊆ Aut C2×C162242(C2xC16).7D7448,56
(C2×C16).8D7 = C1129C4φ: D7/C7C2 ⊆ Aut C2×C16448(C2xC16).8D7448,59
(C2×C16).9D7 = C2×C7⋊C32central extension (φ=1)448(C2xC16).9D7448,55
(C2×C16).10D7 = C16×Dic7central extension (φ=1)448(C2xC16).10D7448,57

׿
×
𝔽