direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D112, C16⋊7D14, C14⋊1D16, C4.6D56, C8.10D28, C28.31D8, C56.60D4, C112⋊8C22, D56⋊7C22, C56.55C23, C22.12D56, C7⋊1(C2×D16), (C2×C16)⋊5D7, (C2×C112)⋊9C2, (C2×D56)⋊8C2, C14.9(C2×D8), (C2×C4).83D28, C4.36(C2×D28), C2.11(C2×D56), (C2×C14).18D8, (C2×C8).303D14, C28.279(C2×D4), (C2×C28).380D4, C8.45(C22×D7), (C2×C56).376C22, SmallGroup(448,436)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D112
G = < a,b,c | a2=b112=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 1012 in 98 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C8, C2×C4, D4, C23, D7, C14, C14, C16, C2×C8, D8, C2×D4, C28, D14, C2×C14, C2×C16, D16, C2×D8, C56, D28, C2×C28, C22×D7, C2×D16, C112, D56, D56, C2×C56, C2×D28, D112, C2×C112, C2×D56, C2×D112
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, D16, C2×D8, D28, C22×D7, C2×D16, D56, C2×D28, D112, C2×D56, C2×D112
(1 169)(2 170)(3 171)(4 172)(5 173)(6 174)(7 175)(8 176)(9 177)(10 178)(11 179)(12 180)(13 181)(14 182)(15 183)(16 184)(17 185)(18 186)(19 187)(20 188)(21 189)(22 190)(23 191)(24 192)(25 193)(26 194)(27 195)(28 196)(29 197)(30 198)(31 199)(32 200)(33 201)(34 202)(35 203)(36 204)(37 205)(38 206)(39 207)(40 208)(41 209)(42 210)(43 211)(44 212)(45 213)(46 214)(47 215)(48 216)(49 217)(50 218)(51 219)(52 220)(53 221)(54 222)(55 223)(56 224)(57 113)(58 114)(59 115)(60 116)(61 117)(62 118)(63 119)(64 120)(65 121)(66 122)(67 123)(68 124)(69 125)(70 126)(71 127)(72 128)(73 129)(74 130)(75 131)(76 132)(77 133)(78 134)(79 135)(80 136)(81 137)(82 138)(83 139)(84 140)(85 141)(86 142)(87 143)(88 144)(89 145)(90 146)(91 147)(92 148)(93 149)(94 150)(95 151)(96 152)(97 153)(98 154)(99 155)(100 156)(101 157)(102 158)(103 159)(104 160)(105 161)(106 162)(107 163)(108 164)(109 165)(110 166)(111 167)(112 168)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 168)(2 167)(3 166)(4 165)(5 164)(6 163)(7 162)(8 161)(9 160)(10 159)(11 158)(12 157)(13 156)(14 155)(15 154)(16 153)(17 152)(18 151)(19 150)(20 149)(21 148)(22 147)(23 146)(24 145)(25 144)(26 143)(27 142)(28 141)(29 140)(30 139)(31 138)(32 137)(33 136)(34 135)(35 134)(36 133)(37 132)(38 131)(39 130)(40 129)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(55 114)(56 113)(57 224)(58 223)(59 222)(60 221)(61 220)(62 219)(63 218)(64 217)(65 216)(66 215)(67 214)(68 213)(69 212)(70 211)(71 210)(72 209)(73 208)(74 207)(75 206)(76 205)(77 204)(78 203)(79 202)(80 201)(81 200)(82 199)(83 198)(84 197)(85 196)(86 195)(87 194)(88 193)(89 192)(90 191)(91 190)(92 189)(93 188)(94 187)(95 186)(96 185)(97 184)(98 183)(99 182)(100 181)(101 180)(102 179)(103 178)(104 177)(105 176)(106 175)(107 174)(108 173)(109 172)(110 171)(111 170)(112 169)
G:=sub<Sym(224)| (1,169)(2,170)(3,171)(4,172)(5,173)(6,174)(7,175)(8,176)(9,177)(10,178)(11,179)(12,180)(13,181)(14,182)(15,183)(16,184)(17,185)(18,186)(19,187)(20,188)(21,189)(22,190)(23,191)(24,192)(25,193)(26,194)(27,195)(28,196)(29,197)(30,198)(31,199)(32,200)(33,201)(34,202)(35,203)(36,204)(37,205)(38,206)(39,207)(40,208)(41,209)(42,210)(43,211)(44,212)(45,213)(46,214)(47,215)(48,216)(49,217)(50,218)(51,219)(52,220)(53,221)(54,222)(55,223)(56,224)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,168)(2,167)(3,166)(4,165)(5,164)(6,163)(7,162)(8,161)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,224)(58,223)(59,222)(60,221)(61,220)(62,219)(63,218)(64,217)(65,216)(66,215)(67,214)(68,213)(69,212)(70,211)(71,210)(72,209)(73,208)(74,207)(75,206)(76,205)(77,204)(78,203)(79,202)(80,201)(81,200)(82,199)(83,198)(84,197)(85,196)(86,195)(87,194)(88,193)(89,192)(90,191)(91,190)(92,189)(93,188)(94,187)(95,186)(96,185)(97,184)(98,183)(99,182)(100,181)(101,180)(102,179)(103,178)(104,177)(105,176)(106,175)(107,174)(108,173)(109,172)(110,171)(111,170)(112,169)>;
G:=Group( (1,169)(2,170)(3,171)(4,172)(5,173)(6,174)(7,175)(8,176)(9,177)(10,178)(11,179)(12,180)(13,181)(14,182)(15,183)(16,184)(17,185)(18,186)(19,187)(20,188)(21,189)(22,190)(23,191)(24,192)(25,193)(26,194)(27,195)(28,196)(29,197)(30,198)(31,199)(32,200)(33,201)(34,202)(35,203)(36,204)(37,205)(38,206)(39,207)(40,208)(41,209)(42,210)(43,211)(44,212)(45,213)(46,214)(47,215)(48,216)(49,217)(50,218)(51,219)(52,220)(53,221)(54,222)(55,223)(56,224)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,168)(2,167)(3,166)(4,165)(5,164)(6,163)(7,162)(8,161)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,224)(58,223)(59,222)(60,221)(61,220)(62,219)(63,218)(64,217)(65,216)(66,215)(67,214)(68,213)(69,212)(70,211)(71,210)(72,209)(73,208)(74,207)(75,206)(76,205)(77,204)(78,203)(79,202)(80,201)(81,200)(82,199)(83,198)(84,197)(85,196)(86,195)(87,194)(88,193)(89,192)(90,191)(91,190)(92,189)(93,188)(94,187)(95,186)(96,185)(97,184)(98,183)(99,182)(100,181)(101,180)(102,179)(103,178)(104,177)(105,176)(106,175)(107,174)(108,173)(109,172)(110,171)(111,170)(112,169) );
G=PermutationGroup([[(1,169),(2,170),(3,171),(4,172),(5,173),(6,174),(7,175),(8,176),(9,177),(10,178),(11,179),(12,180),(13,181),(14,182),(15,183),(16,184),(17,185),(18,186),(19,187),(20,188),(21,189),(22,190),(23,191),(24,192),(25,193),(26,194),(27,195),(28,196),(29,197),(30,198),(31,199),(32,200),(33,201),(34,202),(35,203),(36,204),(37,205),(38,206),(39,207),(40,208),(41,209),(42,210),(43,211),(44,212),(45,213),(46,214),(47,215),(48,216),(49,217),(50,218),(51,219),(52,220),(53,221),(54,222),(55,223),(56,224),(57,113),(58,114),(59,115),(60,116),(61,117),(62,118),(63,119),(64,120),(65,121),(66,122),(67,123),(68,124),(69,125),(70,126),(71,127),(72,128),(73,129),(74,130),(75,131),(76,132),(77,133),(78,134),(79,135),(80,136),(81,137),(82,138),(83,139),(84,140),(85,141),(86,142),(87,143),(88,144),(89,145),(90,146),(91,147),(92,148),(93,149),(94,150),(95,151),(96,152),(97,153),(98,154),(99,155),(100,156),(101,157),(102,158),(103,159),(104,160),(105,161),(106,162),(107,163),(108,164),(109,165),(110,166),(111,167),(112,168)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,168),(2,167),(3,166),(4,165),(5,164),(6,163),(7,162),(8,161),(9,160),(10,159),(11,158),(12,157),(13,156),(14,155),(15,154),(16,153),(17,152),(18,151),(19,150),(20,149),(21,148),(22,147),(23,146),(24,145),(25,144),(26,143),(27,142),(28,141),(29,140),(30,139),(31,138),(32,137),(33,136),(34,135),(35,134),(36,133),(37,132),(38,131),(39,130),(40,129),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(55,114),(56,113),(57,224),(58,223),(59,222),(60,221),(61,220),(62,219),(63,218),(64,217),(65,216),(66,215),(67,214),(68,213),(69,212),(70,211),(71,210),(72,209),(73,208),(74,207),(75,206),(76,205),(77,204),(78,203),(79,202),(80,201),(81,200),(82,199),(83,198),(84,197),(85,196),(86,195),(87,194),(88,193),(89,192),(90,191),(91,190),(92,189),(93,188),(94,187),(95,186),(96,185),(97,184),(98,183),(99,182),(100,181),(101,180),(102,179),(103,178),(104,177),(105,176),(106,175),(107,174),(108,173),(109,172),(110,171),(111,170),(112,169)]])
118 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 16A | ··· | 16H | 28A | ··· | 28L | 56A | ··· | 56X | 112A | ··· | 112AV |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 16 | ··· | 16 | 28 | ··· | 28 | 56 | ··· | 56 | 112 | ··· | 112 |
size | 1 | 1 | 1 | 1 | 56 | 56 | 56 | 56 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
118 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D4 | D7 | D8 | D8 | D14 | D14 | D16 | D28 | D28 | D56 | D56 | D112 |
kernel | C2×D112 | D112 | C2×C112 | C2×D56 | C56 | C2×C28 | C2×C16 | C28 | C2×C14 | C16 | C2×C8 | C14 | C8 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 1 | 1 | 3 | 2 | 2 | 6 | 3 | 8 | 6 | 6 | 12 | 12 | 48 |
Matrix representation of C2×D112 ►in GL3(𝔽113) generated by
112 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
112 | 0 | 0 |
0 | 108 | 74 |
0 | 39 | 78 |
112 | 0 | 0 |
0 | 108 | 74 |
0 | 18 | 5 |
G:=sub<GL(3,GF(113))| [112,0,0,0,1,0,0,0,1],[112,0,0,0,108,39,0,74,78],[112,0,0,0,108,18,0,74,5] >;
C2×D112 in GAP, Magma, Sage, TeX
C_2\times D_{112}
% in TeX
G:=Group("C2xD112");
// GroupNames label
G:=SmallGroup(448,436);
// by ID
G=gap.SmallGroup(448,436);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,142,675,192,1684,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^2=b^112=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations