Copied to
clipboard

G = C2×D112order 448 = 26·7

Direct product of C2 and D112

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D112, C167D14, C141D16, C4.6D56, C8.10D28, C28.31D8, C56.60D4, C1128C22, D567C22, C56.55C23, C22.12D56, C71(C2×D16), (C2×C16)⋊5D7, (C2×C112)⋊9C2, (C2×D56)⋊8C2, C14.9(C2×D8), (C2×C4).83D28, C4.36(C2×D28), C2.11(C2×D56), (C2×C14).18D8, (C2×C8).303D14, C28.279(C2×D4), (C2×C28).380D4, C8.45(C22×D7), (C2×C56).376C22, SmallGroup(448,436)

Series: Derived Chief Lower central Upper central

C1C56 — C2×D112
C1C7C14C28C56D56C2×D56 — C2×D112
C7C14C28C56 — C2×D112
C1C22C2×C4C2×C8C2×C16

Generators and relations for C2×D112
 G = < a,b,c | a2=b112=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 1012 in 98 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C8, C2×C4, D4, C23, D7, C14, C14, C16, C2×C8, D8, C2×D4, C28, D14, C2×C14, C2×C16, D16, C2×D8, C56, D28, C2×C28, C22×D7, C2×D16, C112, D56, D56, C2×C56, C2×D28, D112, C2×C112, C2×D56, C2×D112
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, D16, C2×D8, D28, C22×D7, C2×D16, D56, C2×D28, D112, C2×D56, C2×D112

Smallest permutation representation of C2×D112
On 224 points
Generators in S224
(1 169)(2 170)(3 171)(4 172)(5 173)(6 174)(7 175)(8 176)(9 177)(10 178)(11 179)(12 180)(13 181)(14 182)(15 183)(16 184)(17 185)(18 186)(19 187)(20 188)(21 189)(22 190)(23 191)(24 192)(25 193)(26 194)(27 195)(28 196)(29 197)(30 198)(31 199)(32 200)(33 201)(34 202)(35 203)(36 204)(37 205)(38 206)(39 207)(40 208)(41 209)(42 210)(43 211)(44 212)(45 213)(46 214)(47 215)(48 216)(49 217)(50 218)(51 219)(52 220)(53 221)(54 222)(55 223)(56 224)(57 113)(58 114)(59 115)(60 116)(61 117)(62 118)(63 119)(64 120)(65 121)(66 122)(67 123)(68 124)(69 125)(70 126)(71 127)(72 128)(73 129)(74 130)(75 131)(76 132)(77 133)(78 134)(79 135)(80 136)(81 137)(82 138)(83 139)(84 140)(85 141)(86 142)(87 143)(88 144)(89 145)(90 146)(91 147)(92 148)(93 149)(94 150)(95 151)(96 152)(97 153)(98 154)(99 155)(100 156)(101 157)(102 158)(103 159)(104 160)(105 161)(106 162)(107 163)(108 164)(109 165)(110 166)(111 167)(112 168)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 168)(2 167)(3 166)(4 165)(5 164)(6 163)(7 162)(8 161)(9 160)(10 159)(11 158)(12 157)(13 156)(14 155)(15 154)(16 153)(17 152)(18 151)(19 150)(20 149)(21 148)(22 147)(23 146)(24 145)(25 144)(26 143)(27 142)(28 141)(29 140)(30 139)(31 138)(32 137)(33 136)(34 135)(35 134)(36 133)(37 132)(38 131)(39 130)(40 129)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(55 114)(56 113)(57 224)(58 223)(59 222)(60 221)(61 220)(62 219)(63 218)(64 217)(65 216)(66 215)(67 214)(68 213)(69 212)(70 211)(71 210)(72 209)(73 208)(74 207)(75 206)(76 205)(77 204)(78 203)(79 202)(80 201)(81 200)(82 199)(83 198)(84 197)(85 196)(86 195)(87 194)(88 193)(89 192)(90 191)(91 190)(92 189)(93 188)(94 187)(95 186)(96 185)(97 184)(98 183)(99 182)(100 181)(101 180)(102 179)(103 178)(104 177)(105 176)(106 175)(107 174)(108 173)(109 172)(110 171)(111 170)(112 169)

G:=sub<Sym(224)| (1,169)(2,170)(3,171)(4,172)(5,173)(6,174)(7,175)(8,176)(9,177)(10,178)(11,179)(12,180)(13,181)(14,182)(15,183)(16,184)(17,185)(18,186)(19,187)(20,188)(21,189)(22,190)(23,191)(24,192)(25,193)(26,194)(27,195)(28,196)(29,197)(30,198)(31,199)(32,200)(33,201)(34,202)(35,203)(36,204)(37,205)(38,206)(39,207)(40,208)(41,209)(42,210)(43,211)(44,212)(45,213)(46,214)(47,215)(48,216)(49,217)(50,218)(51,219)(52,220)(53,221)(54,222)(55,223)(56,224)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,168)(2,167)(3,166)(4,165)(5,164)(6,163)(7,162)(8,161)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,224)(58,223)(59,222)(60,221)(61,220)(62,219)(63,218)(64,217)(65,216)(66,215)(67,214)(68,213)(69,212)(70,211)(71,210)(72,209)(73,208)(74,207)(75,206)(76,205)(77,204)(78,203)(79,202)(80,201)(81,200)(82,199)(83,198)(84,197)(85,196)(86,195)(87,194)(88,193)(89,192)(90,191)(91,190)(92,189)(93,188)(94,187)(95,186)(96,185)(97,184)(98,183)(99,182)(100,181)(101,180)(102,179)(103,178)(104,177)(105,176)(106,175)(107,174)(108,173)(109,172)(110,171)(111,170)(112,169)>;

G:=Group( (1,169)(2,170)(3,171)(4,172)(5,173)(6,174)(7,175)(8,176)(9,177)(10,178)(11,179)(12,180)(13,181)(14,182)(15,183)(16,184)(17,185)(18,186)(19,187)(20,188)(21,189)(22,190)(23,191)(24,192)(25,193)(26,194)(27,195)(28,196)(29,197)(30,198)(31,199)(32,200)(33,201)(34,202)(35,203)(36,204)(37,205)(38,206)(39,207)(40,208)(41,209)(42,210)(43,211)(44,212)(45,213)(46,214)(47,215)(48,216)(49,217)(50,218)(51,219)(52,220)(53,221)(54,222)(55,223)(56,224)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,168)(2,167)(3,166)(4,165)(5,164)(6,163)(7,162)(8,161)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,224)(58,223)(59,222)(60,221)(61,220)(62,219)(63,218)(64,217)(65,216)(66,215)(67,214)(68,213)(69,212)(70,211)(71,210)(72,209)(73,208)(74,207)(75,206)(76,205)(77,204)(78,203)(79,202)(80,201)(81,200)(82,199)(83,198)(84,197)(85,196)(86,195)(87,194)(88,193)(89,192)(90,191)(91,190)(92,189)(93,188)(94,187)(95,186)(96,185)(97,184)(98,183)(99,182)(100,181)(101,180)(102,179)(103,178)(104,177)(105,176)(106,175)(107,174)(108,173)(109,172)(110,171)(111,170)(112,169) );

G=PermutationGroup([[(1,169),(2,170),(3,171),(4,172),(5,173),(6,174),(7,175),(8,176),(9,177),(10,178),(11,179),(12,180),(13,181),(14,182),(15,183),(16,184),(17,185),(18,186),(19,187),(20,188),(21,189),(22,190),(23,191),(24,192),(25,193),(26,194),(27,195),(28,196),(29,197),(30,198),(31,199),(32,200),(33,201),(34,202),(35,203),(36,204),(37,205),(38,206),(39,207),(40,208),(41,209),(42,210),(43,211),(44,212),(45,213),(46,214),(47,215),(48,216),(49,217),(50,218),(51,219),(52,220),(53,221),(54,222),(55,223),(56,224),(57,113),(58,114),(59,115),(60,116),(61,117),(62,118),(63,119),(64,120),(65,121),(66,122),(67,123),(68,124),(69,125),(70,126),(71,127),(72,128),(73,129),(74,130),(75,131),(76,132),(77,133),(78,134),(79,135),(80,136),(81,137),(82,138),(83,139),(84,140),(85,141),(86,142),(87,143),(88,144),(89,145),(90,146),(91,147),(92,148),(93,149),(94,150),(95,151),(96,152),(97,153),(98,154),(99,155),(100,156),(101,157),(102,158),(103,159),(104,160),(105,161),(106,162),(107,163),(108,164),(109,165),(110,166),(111,167),(112,168)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,168),(2,167),(3,166),(4,165),(5,164),(6,163),(7,162),(8,161),(9,160),(10,159),(11,158),(12,157),(13,156),(14,155),(15,154),(16,153),(17,152),(18,151),(19,150),(20,149),(21,148),(22,147),(23,146),(24,145),(25,144),(26,143),(27,142),(28,141),(29,140),(30,139),(31,138),(32,137),(33,136),(34,135),(35,134),(36,133),(37,132),(38,131),(39,130),(40,129),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(55,114),(56,113),(57,224),(58,223),(59,222),(60,221),(61,220),(62,219),(63,218),(64,217),(65,216),(66,215),(67,214),(68,213),(69,212),(70,211),(71,210),(72,209),(73,208),(74,207),(75,206),(76,205),(77,204),(78,203),(79,202),(80,201),(81,200),(82,199),(83,198),(84,197),(85,196),(86,195),(87,194),(88,193),(89,192),(90,191),(91,190),(92,189),(93,188),(94,187),(95,186),(96,185),(97,184),(98,183),(99,182),(100,181),(101,180),(102,179),(103,178),(104,177),(105,176),(106,175),(107,174),(108,173),(109,172),(110,171),(111,170),(112,169)]])

118 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B7A7B7C8A8B8C8D14A···14I16A···16H28A···28L56A···56X112A···112AV
order1222222244777888814···1416···1628···2856···56112···112
size1111565656562222222222···22···22···22···22···2

118 irreducible representations

dim11112222222222222
type+++++++++++++++++
imageC1C2C2C2D4D4D7D8D8D14D14D16D28D28D56D56D112
kernelC2×D112D112C2×C112C2×D56C56C2×C28C2×C16C28C2×C14C16C2×C8C14C8C2×C4C4C22C2
# reps14121132263866121248

Matrix representation of C2×D112 in GL3(𝔽113) generated by

11200
010
001
,
11200
010874
03978
,
11200
010874
0185
G:=sub<GL(3,GF(113))| [112,0,0,0,1,0,0,0,1],[112,0,0,0,108,39,0,74,78],[112,0,0,0,108,18,0,74,5] >;

C2×D112 in GAP, Magma, Sage, TeX

C_2\times D_{112}
% in TeX

G:=Group("C2xD112");
// GroupNames label

G:=SmallGroup(448,436);
// by ID

G=gap.SmallGroup(448,436);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,142,675,192,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^2=b^112=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽