extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic7⋊C4)⋊1C2 = D14⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):1C2 | 448,201 |
(C2×Dic7⋊C4)⋊2C2 = D14⋊C4⋊5C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):2C2 | 448,203 |
(C2×Dic7⋊C4)⋊3C2 = (C22×D7).9D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):3C2 | 448,209 |
(C2×Dic7⋊C4)⋊4C2 = (C22×D7).Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):4C2 | 448,210 |
(C2×Dic7⋊C4)⋊5C2 = (C2×C42)⋊D7 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):5C2 | 448,474 |
(C2×Dic7⋊C4)⋊6C2 = C24.44D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):6C2 | 448,476 |
(C2×Dic7⋊C4)⋊7C2 = C24.3D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):7C2 | 448,478 |
(C2×Dic7⋊C4)⋊8C2 = C24.46D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):8C2 | 448,480 |
(C2×Dic7⋊C4)⋊9C2 = C24.7D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):9C2 | 448,483 |
(C2×Dic7⋊C4)⋊10C2 = C24.9D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):10C2 | 448,486 |
(C2×Dic7⋊C4)⋊11C2 = C24.13D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):11C2 | 448,491 |
(C2×Dic7⋊C4)⋊12C2 = C24.14D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):12C2 | 448,493 |
(C2×Dic7⋊C4)⋊13C2 = D14⋊C4⋊6C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):13C2 | 448,523 |
(C2×Dic7⋊C4)⋊14C2 = (C2×C28).289D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):14C2 | 448,526 |
(C2×Dic7⋊C4)⋊15C2 = C24.62D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):15C2 | 448,744 |
(C2×Dic7⋊C4)⋊16C2 = C2×C42⋊2D7 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):16C2 | 448,931 |
(C2×Dic7⋊C4)⋊17C2 = C2×C28.48D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):17C2 | 448,1237 |
(C2×Dic7⋊C4)⋊18C2 = C2×C23.23D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):18C2 | 448,1242 |
(C2×Dic7⋊C4)⋊19C2 = (C2×Dic7)⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):19C2 | 448,206 |
(C2×Dic7⋊C4)⋊20C2 = C24.6D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):20C2 | 448,482 |
(C2×Dic7⋊C4)⋊21C2 = C2×C22⋊Dic14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):21C2 | 448,934 |
(C2×Dic7⋊C4)⋊22C2 = C2×D14⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):22C2 | 448,942 |
(C2×Dic7⋊C4)⋊23C2 = C2×D14.5D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):23C2 | 448,958 |
(C2×Dic7⋊C4)⋊24C2 = D4⋊5Dic14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):24C2 | 448,992 |
(C2×Dic7⋊C4)⋊25C2 = C42.104D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):25C2 | 448,993 |
(C2×Dic7⋊C4)⋊26C2 = C14.802- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):26C2 | 448,1103 |
(C2×Dic7⋊C4)⋊27C2 = C14.822- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):27C2 | 448,1108 |
(C2×Dic7⋊C4)⋊28C2 = C14.682- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):28C2 | 448,1050 |
(C2×Dic7⋊C4)⋊29C2 = C14.352+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):29C2 | 448,1055 |
(C2×Dic7⋊C4)⋊30C2 = C14.572+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):30C2 | 448,1098 |
(C2×Dic7⋊C4)⋊31C2 = D14⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):31C2 | 448,202 |
(C2×Dic7⋊C4)⋊32C2 = C24.4D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):32C2 | 448,479 |
(C2×Dic7⋊C4)⋊33C2 = C2×C23.11D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):33C2 | 448,933 |
(C2×Dic7⋊C4)⋊34C2 = C2×C23.D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):34C2 | 448,935 |
(C2×Dic7⋊C4)⋊35C2 = C2×Dic7⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):35C2 | 448,938 |
(C2×Dic7⋊C4)⋊36C2 = C2×D14.D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):36C2 | 448,941 |
(C2×Dic7⋊C4)⋊37C2 = C2×D7×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):37C2 | 448,954 |
(C2×Dic7⋊C4)⋊38C2 = C42.108D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):38C2 | 448,999 |
(C2×Dic7⋊C4)⋊39C2 = C42.118D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):39C2 | 448,1017 |
(C2×Dic7⋊C4)⋊40C2 = C14.342+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):40C2 | 448,1054 |
(C2×Dic7⋊C4)⋊41C2 = C14.522+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):41C2 | 448,1089 |
(C2×Dic7⋊C4)⋊42C2 = (C2×C4).45D28 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):42C2 | 448,528 |
(C2×Dic7⋊C4)⋊43C2 = C24.20D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):43C2 | 448,756 |
(C2×Dic7⋊C4)⋊44C2 = C2×D14⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):44C2 | 448,961 |
(C2×Dic7⋊C4)⋊45C2 = C2×C4⋊C4⋊D7 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):45C2 | 448,965 |
(C2×Dic7⋊C4)⋊46C2 = C42.96D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):46C2 | 448,984 |
(C2×Dic7⋊C4)⋊47C2 = C2×C23.18D14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):47C2 | 448,1249 |
(C2×Dic7⋊C4)⋊48C2 = C2×Dic7⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):48C2 | 448,1255 |
(C2×Dic7⋊C4)⋊49C2 = C2×D14⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):49C2 | 448,1266 |
(C2×Dic7⋊C4)⋊50C2 = C14.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4):50C2 | 448,1277 |
(C2×Dic7⋊C4)⋊51C2 = C2×C42⋊D7 | φ: trivial image | 224 | | (C2xDic7:C4):51C2 | 448,925 |
(C2×Dic7⋊C4)⋊52C2 = C2×C4×C7⋊D4 | φ: trivial image | 224 | | (C2xDic7:C4):52C2 | 448,1241 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic7⋊C4).1C2 = (C2×C28)⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).1C2 | 448,180 |
(C2×Dic7⋊C4).2C2 = C14.(C4×Q8) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).2C2 | 448,181 |
(C2×Dic7⋊C4).3C2 = C7⋊(C42⋊8C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).3C2 | 448,184 |
(C2×Dic7⋊C4).4C2 = Dic7⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).4C2 | 448,186 |
(C2×Dic7⋊C4).5C2 = C4⋊Dic7⋊8C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).5C2 | 448,188 |
(C2×Dic7⋊C4).6C2 = C2.(C28⋊Q8) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).6C2 | 448,191 |
(C2×Dic7⋊C4).7C2 = (C2×Dic7).Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).7C2 | 448,192 |
(C2×Dic7⋊C4).8C2 = (C2×C4).Dic14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).8C2 | 448,194 |
(C2×Dic7⋊C4).9C2 = C28⋊4(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).9C2 | 448,462 |
(C2×Dic7⋊C4).10C2 = (C2×C42).D7 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).10C2 | 448,467 |
(C2×Dic7⋊C4).11C2 = C28⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).11C2 | 448,507 |
(C2×Dic7⋊C4).12C2 = (C4×Dic7)⋊8C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).12C2 | 448,510 |
(C2×Dic7⋊C4).13C2 = (C2×C4)⋊Dic14 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).13C2 | 448,513 |
(C2×Dic7⋊C4).14C2 = (C2×C28).287D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).14C2 | 448,514 |
(C2×Dic7⋊C4).15C2 = (C2×C28).54D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).15C2 | 448,518 |
(C2×Dic7⋊C4).16C2 = C2×C28.6Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).16C2 | 448,922 |
(C2×Dic7⋊C4).17C2 = C14.(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).17C2 | 448,189 |
(C2×Dic7⋊C4).18C2 = (C2×Dic7)⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).18C2 | 448,190 |
(C2×Dic7⋊C4).19C2 = (C2×C28).28D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).19C2 | 448,193 |
(C2×Dic7⋊C4).20C2 = C14.(C4⋊Q8) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).20C2 | 448,195 |
(C2×Dic7⋊C4).21C2 = C2×C28⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).21C2 | 448,950 |
(C2×Dic7⋊C4).22C2 = C2×C28.3Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).22C2 | 448,952 |
(C2×Dic7⋊C4).23C2 = C14.752- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4).23C2 | 448,1076 |
(C2×Dic7⋊C4).24C2 = (C2×Dic7)⋊C8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 224 | | (C2xDic7:C4).24C2 | 448,26 |
(C2×Dic7⋊C4).25C2 = Dic7⋊C42 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).25C2 | 448,183 |
(C2×Dic7⋊C4).26C2 = C4⋊Dic7⋊7C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).26C2 | 448,187 |
(C2×Dic7⋊C4).27C2 = Dic7⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).27C2 | 448,506 |
(C2×Dic7⋊C4).28C2 = C2×Dic7⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).28C2 | 448,949 |
(C2×Dic7⋊C4).29C2 = C2×Dic7.Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).29C2 | 448,951 |
(C2×Dic7⋊C4).30C2 = C22.23(Q8×D7) | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).30C2 | 448,512 |
(C2×Dic7⋊C4).31C2 = (C2×C28).288D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).31C2 | 448,516 |
(C2×Dic7⋊C4).32C2 = (C2×C4).44D28 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).32C2 | 448,517 |
(C2×Dic7⋊C4).33C2 = C14.C22≀C2 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).33C2 | 448,763 |
(C2×Dic7⋊C4).34C2 = C2×Dic7⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic7⋊C4 | 448 | | (C2xDic7:C4).34C2 | 448,1263 |
(C2×Dic7⋊C4).35C2 = C4×Dic7⋊C4 | φ: trivial image | 448 | | (C2xDic7:C4).35C2 | 448,465 |
(C2×Dic7⋊C4).36C2 = C2×C4×Dic14 | φ: trivial image | 448 | | (C2xDic7:C4).36C2 | 448,920 |