direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D14⋊D4, C24.26D14, D14⋊1(C2×D4), Dic7⋊6(C2×D4), (C22×D7)⋊9D4, C14⋊1(C4⋊D4), C22⋊C4⋊39D14, (C2×Dic7)⋊19D4, (C22×D28)⋊6C2, D14⋊C4⋊58C22, (C2×D28)⋊44C22, (C2×C14).33C24, C22.127(D4×D7), C14.36(C22×D4), (C2×C28).573C23, Dic7⋊C4⋊48C22, (C22×C4).170D14, (C22×D7).6C23, C23.80(C22×D7), C22.72(C23×D7), C22.73(C4○D28), (C23×C14).59C22, (C23×D7).96C22, (C22×C28).353C22, (C22×C14).125C23, (C2×Dic7).179C23, (C22×Dic7).77C22, C7⋊1(C2×C4⋊D4), C2.10(C2×D4×D7), (C2×C4×D7)⋊66C22, (D7×C22×C4)⋊18C2, (C2×D14⋊C4)⋊31C2, (C2×C22⋊C4)⋊12D7, C14.13(C2×C4○D4), C2.15(C2×C4○D28), (C22×C7⋊D4)⋊4C2, (C14×C22⋊C4)⋊17C2, (C2×Dic7⋊C4)⋊22C2, (C2×C14).382(C2×D4), (C2×C7⋊D4)⋊35C22, (C7×C22⋊C4)⋊52C22, (C2×C4).134(C22×D7), (C2×C14).102(C4○D4), SmallGroup(448,942)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D14⋊D4
G = < a,b,c,d,e | a2=b14=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe=b-1, dcd-1=b12c, ece=b5c, ede=d-1 >
Subgroups: 2260 in 426 conjugacy classes, 127 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, D7, C14, C14, C14, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic7, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C22×D4, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C2×C4⋊D4, Dic7⋊C4, D14⋊C4, C7×C22⋊C4, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, C22×Dic7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, C23×D7, C23×C14, D14⋊D4, C2×Dic7⋊C4, C2×D14⋊C4, C14×C22⋊C4, D7×C22×C4, C22×D28, C22×C7⋊D4, C2×D14⋊D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C4⋊D4, C22×D4, C2×C4○D4, C22×D7, C2×C4⋊D4, C4○D28, D4×D7, C23×D7, D14⋊D4, C2×C4○D28, C2×D4×D7, C2×D14⋊D4
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 91)(8 92)(9 93)(10 94)(11 95)(12 96)(13 97)(14 98)(15 134)(16 135)(17 136)(18 137)(19 138)(20 139)(21 140)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 45)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)(41 43)(42 44)(57 146)(58 147)(59 148)(60 149)(61 150)(62 151)(63 152)(64 153)(65 154)(66 141)(67 142)(68 143)(69 144)(70 145)(71 103)(72 104)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)(81 99)(82 100)(83 101)(84 102)(113 194)(114 195)(115 196)(116 183)(117 184)(118 185)(119 186)(120 187)(121 188)(122 189)(123 190)(124 191)(125 192)(126 193)(155 174)(156 175)(157 176)(158 177)(159 178)(160 179)(161 180)(162 181)(163 182)(164 169)(165 170)(166 171)(167 172)(168 173)(197 218)(198 219)(199 220)(200 221)(201 222)(202 223)(203 224)(204 211)(205 212)(206 213)(207 214)(208 215)(209 216)(210 217)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 20)(16 19)(17 18)(21 28)(22 27)(23 26)(24 25)(29 39)(30 38)(31 37)(32 36)(33 35)(40 42)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(57 68)(58 67)(59 66)(60 65)(61 64)(62 63)(69 70)(71 72)(73 84)(74 83)(75 82)(76 81)(77 80)(78 79)(85 98)(86 97)(87 96)(88 95)(89 94)(90 93)(91 92)(99 108)(100 107)(101 106)(102 105)(103 104)(109 112)(110 111)(113 115)(116 126)(117 125)(118 124)(119 123)(120 122)(127 132)(128 131)(129 130)(133 140)(134 139)(135 138)(136 137)(141 148)(142 147)(143 146)(144 145)(149 154)(150 153)(151 152)(155 159)(156 158)(160 168)(161 167)(162 166)(163 165)(170 182)(171 181)(172 180)(173 179)(174 178)(175 177)(183 193)(184 192)(185 191)(186 190)(187 189)(194 196)(198 210)(199 209)(200 208)(201 207)(202 206)(203 205)(212 224)(213 223)(214 222)(215 221)(216 220)(217 219)
(1 70 18 111)(2 69 19 110)(3 68 20 109)(4 67 21 108)(5 66 22 107)(6 65 23 106)(7 64 24 105)(8 63 25 104)(9 62 26 103)(10 61 27 102)(11 60 28 101)(12 59 15 100)(13 58 16 99)(14 57 17 112)(29 113 213 163)(30 126 214 162)(31 125 215 161)(32 124 216 160)(33 123 217 159)(34 122 218 158)(35 121 219 157)(36 120 220 156)(37 119 221 155)(38 118 222 168)(39 117 223 167)(40 116 224 166)(41 115 211 165)(42 114 212 164)(43 196 204 170)(44 195 205 169)(45 194 206 182)(46 193 207 181)(47 192 208 180)(48 191 209 179)(49 190 210 178)(50 189 197 177)(51 188 198 176)(52 187 199 175)(53 186 200 174)(54 185 201 173)(55 184 202 172)(56 183 203 171)(71 93 151 131)(72 92 152 130)(73 91 153 129)(74 90 154 128)(75 89 141 127)(76 88 142 140)(77 87 143 139)(78 86 144 138)(79 85 145 137)(80 98 146 136)(81 97 147 135)(82 96 148 134)(83 95 149 133)(84 94 150 132)
(1 185)(2 184)(3 183)(4 196)(5 195)(6 194)(7 193)(8 192)(9 191)(10 190)(11 189)(12 188)(13 187)(14 186)(15 176)(16 175)(17 174)(18 173)(19 172)(20 171)(21 170)(22 169)(23 182)(24 181)(25 180)(26 179)(27 178)(28 177)(29 154)(30 153)(31 152)(32 151)(33 150)(34 149)(35 148)(36 147)(37 146)(38 145)(39 144)(40 143)(41 142)(42 141)(43 67)(44 66)(45 65)(46 64)(47 63)(48 62)(49 61)(50 60)(51 59)(52 58)(53 57)(54 70)(55 69)(56 68)(71 216)(72 215)(73 214)(74 213)(75 212)(76 211)(77 224)(78 223)(79 222)(80 221)(81 220)(82 219)(83 218)(84 217)(85 118)(86 117)(87 116)(88 115)(89 114)(90 113)(91 126)(92 125)(93 124)(94 123)(95 122)(96 121)(97 120)(98 119)(99 199)(100 198)(101 197)(102 210)(103 209)(104 208)(105 207)(106 206)(107 205)(108 204)(109 203)(110 202)(111 201)(112 200)(127 164)(128 163)(129 162)(130 161)(131 160)(132 159)(133 158)(134 157)(135 156)(136 155)(137 168)(138 167)(139 166)(140 165)
G:=sub<Sym(224)| (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,43)(42,44)(57,146)(58,147)(59,148)(60,149)(61,150)(62,151)(63,152)(64,153)(65,154)(66,141)(67,142)(68,143)(69,144)(70,145)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,99)(82,100)(83,101)(84,102)(113,194)(114,195)(115,196)(116,183)(117,184)(118,185)(119,186)(120,187)(121,188)(122,189)(123,190)(124,191)(125,192)(126,193)(155,174)(156,175)(157,176)(158,177)(159,178)(160,179)(161,180)(162,181)(163,182)(164,169)(165,170)(166,171)(167,172)(168,173)(197,218)(198,219)(199,220)(200,221)(201,222)(202,223)(203,224)(204,211)(205,212)(206,213)(207,214)(208,215)(209,216)(210,217), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,20)(16,19)(17,18)(21,28)(22,27)(23,26)(24,25)(29,39)(30,38)(31,37)(32,36)(33,35)(40,42)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,72)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,108)(100,107)(101,106)(102,105)(103,104)(109,112)(110,111)(113,115)(116,126)(117,125)(118,124)(119,123)(120,122)(127,132)(128,131)(129,130)(133,140)(134,139)(135,138)(136,137)(141,148)(142,147)(143,146)(144,145)(149,154)(150,153)(151,152)(155,159)(156,158)(160,168)(161,167)(162,166)(163,165)(170,182)(171,181)(172,180)(173,179)(174,178)(175,177)(183,193)(184,192)(185,191)(186,190)(187,189)(194,196)(198,210)(199,209)(200,208)(201,207)(202,206)(203,205)(212,224)(213,223)(214,222)(215,221)(216,220)(217,219), (1,70,18,111)(2,69,19,110)(3,68,20,109)(4,67,21,108)(5,66,22,107)(6,65,23,106)(7,64,24,105)(8,63,25,104)(9,62,26,103)(10,61,27,102)(11,60,28,101)(12,59,15,100)(13,58,16,99)(14,57,17,112)(29,113,213,163)(30,126,214,162)(31,125,215,161)(32,124,216,160)(33,123,217,159)(34,122,218,158)(35,121,219,157)(36,120,220,156)(37,119,221,155)(38,118,222,168)(39,117,223,167)(40,116,224,166)(41,115,211,165)(42,114,212,164)(43,196,204,170)(44,195,205,169)(45,194,206,182)(46,193,207,181)(47,192,208,180)(48,191,209,179)(49,190,210,178)(50,189,197,177)(51,188,198,176)(52,187,199,175)(53,186,200,174)(54,185,201,173)(55,184,202,172)(56,183,203,171)(71,93,151,131)(72,92,152,130)(73,91,153,129)(74,90,154,128)(75,89,141,127)(76,88,142,140)(77,87,143,139)(78,86,144,138)(79,85,145,137)(80,98,146,136)(81,97,147,135)(82,96,148,134)(83,95,149,133)(84,94,150,132), (1,185)(2,184)(3,183)(4,196)(5,195)(6,194)(7,193)(8,192)(9,191)(10,190)(11,189)(12,188)(13,187)(14,186)(15,176)(16,175)(17,174)(18,173)(19,172)(20,171)(21,170)(22,169)(23,182)(24,181)(25,180)(26,179)(27,178)(28,177)(29,154)(30,153)(31,152)(32,151)(33,150)(34,149)(35,148)(36,147)(37,146)(38,145)(39,144)(40,143)(41,142)(42,141)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,70)(55,69)(56,68)(71,216)(72,215)(73,214)(74,213)(75,212)(76,211)(77,224)(78,223)(79,222)(80,221)(81,220)(82,219)(83,218)(84,217)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,199)(100,198)(101,197)(102,210)(103,209)(104,208)(105,207)(106,206)(107,205)(108,204)(109,203)(110,202)(111,201)(112,200)(127,164)(128,163)(129,162)(130,161)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,168)(138,167)(139,166)(140,165)>;
G:=Group( (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,43)(42,44)(57,146)(58,147)(59,148)(60,149)(61,150)(62,151)(63,152)(64,153)(65,154)(66,141)(67,142)(68,143)(69,144)(70,145)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,99)(82,100)(83,101)(84,102)(113,194)(114,195)(115,196)(116,183)(117,184)(118,185)(119,186)(120,187)(121,188)(122,189)(123,190)(124,191)(125,192)(126,193)(155,174)(156,175)(157,176)(158,177)(159,178)(160,179)(161,180)(162,181)(163,182)(164,169)(165,170)(166,171)(167,172)(168,173)(197,218)(198,219)(199,220)(200,221)(201,222)(202,223)(203,224)(204,211)(205,212)(206,213)(207,214)(208,215)(209,216)(210,217), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,20)(16,19)(17,18)(21,28)(22,27)(23,26)(24,25)(29,39)(30,38)(31,37)(32,36)(33,35)(40,42)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,72)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,108)(100,107)(101,106)(102,105)(103,104)(109,112)(110,111)(113,115)(116,126)(117,125)(118,124)(119,123)(120,122)(127,132)(128,131)(129,130)(133,140)(134,139)(135,138)(136,137)(141,148)(142,147)(143,146)(144,145)(149,154)(150,153)(151,152)(155,159)(156,158)(160,168)(161,167)(162,166)(163,165)(170,182)(171,181)(172,180)(173,179)(174,178)(175,177)(183,193)(184,192)(185,191)(186,190)(187,189)(194,196)(198,210)(199,209)(200,208)(201,207)(202,206)(203,205)(212,224)(213,223)(214,222)(215,221)(216,220)(217,219), (1,70,18,111)(2,69,19,110)(3,68,20,109)(4,67,21,108)(5,66,22,107)(6,65,23,106)(7,64,24,105)(8,63,25,104)(9,62,26,103)(10,61,27,102)(11,60,28,101)(12,59,15,100)(13,58,16,99)(14,57,17,112)(29,113,213,163)(30,126,214,162)(31,125,215,161)(32,124,216,160)(33,123,217,159)(34,122,218,158)(35,121,219,157)(36,120,220,156)(37,119,221,155)(38,118,222,168)(39,117,223,167)(40,116,224,166)(41,115,211,165)(42,114,212,164)(43,196,204,170)(44,195,205,169)(45,194,206,182)(46,193,207,181)(47,192,208,180)(48,191,209,179)(49,190,210,178)(50,189,197,177)(51,188,198,176)(52,187,199,175)(53,186,200,174)(54,185,201,173)(55,184,202,172)(56,183,203,171)(71,93,151,131)(72,92,152,130)(73,91,153,129)(74,90,154,128)(75,89,141,127)(76,88,142,140)(77,87,143,139)(78,86,144,138)(79,85,145,137)(80,98,146,136)(81,97,147,135)(82,96,148,134)(83,95,149,133)(84,94,150,132), (1,185)(2,184)(3,183)(4,196)(5,195)(6,194)(7,193)(8,192)(9,191)(10,190)(11,189)(12,188)(13,187)(14,186)(15,176)(16,175)(17,174)(18,173)(19,172)(20,171)(21,170)(22,169)(23,182)(24,181)(25,180)(26,179)(27,178)(28,177)(29,154)(30,153)(31,152)(32,151)(33,150)(34,149)(35,148)(36,147)(37,146)(38,145)(39,144)(40,143)(41,142)(42,141)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,70)(55,69)(56,68)(71,216)(72,215)(73,214)(74,213)(75,212)(76,211)(77,224)(78,223)(79,222)(80,221)(81,220)(82,219)(83,218)(84,217)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,199)(100,198)(101,197)(102,210)(103,209)(104,208)(105,207)(106,206)(107,205)(108,204)(109,203)(110,202)(111,201)(112,200)(127,164)(128,163)(129,162)(130,161)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,168)(138,167)(139,166)(140,165) );
G=PermutationGroup([[(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,91),(8,92),(9,93),(10,94),(11,95),(12,96),(13,97),(14,98),(15,134),(16,135),(17,136),(18,137),(19,138),(20,139),(21,140),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,45),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56),(41,43),(42,44),(57,146),(58,147),(59,148),(60,149),(61,150),(62,151),(63,152),(64,153),(65,154),(66,141),(67,142),(68,143),(69,144),(70,145),(71,103),(72,104),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112),(81,99),(82,100),(83,101),(84,102),(113,194),(114,195),(115,196),(116,183),(117,184),(118,185),(119,186),(120,187),(121,188),(122,189),(123,190),(124,191),(125,192),(126,193),(155,174),(156,175),(157,176),(158,177),(159,178),(160,179),(161,180),(162,181),(163,182),(164,169),(165,170),(166,171),(167,172),(168,173),(197,218),(198,219),(199,220),(200,221),(201,222),(202,223),(203,224),(204,211),(205,212),(206,213),(207,214),(208,215),(209,216),(210,217)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,20),(16,19),(17,18),(21,28),(22,27),(23,26),(24,25),(29,39),(30,38),(31,37),(32,36),(33,35),(40,42),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(57,68),(58,67),(59,66),(60,65),(61,64),(62,63),(69,70),(71,72),(73,84),(74,83),(75,82),(76,81),(77,80),(78,79),(85,98),(86,97),(87,96),(88,95),(89,94),(90,93),(91,92),(99,108),(100,107),(101,106),(102,105),(103,104),(109,112),(110,111),(113,115),(116,126),(117,125),(118,124),(119,123),(120,122),(127,132),(128,131),(129,130),(133,140),(134,139),(135,138),(136,137),(141,148),(142,147),(143,146),(144,145),(149,154),(150,153),(151,152),(155,159),(156,158),(160,168),(161,167),(162,166),(163,165),(170,182),(171,181),(172,180),(173,179),(174,178),(175,177),(183,193),(184,192),(185,191),(186,190),(187,189),(194,196),(198,210),(199,209),(200,208),(201,207),(202,206),(203,205),(212,224),(213,223),(214,222),(215,221),(216,220),(217,219)], [(1,70,18,111),(2,69,19,110),(3,68,20,109),(4,67,21,108),(5,66,22,107),(6,65,23,106),(7,64,24,105),(8,63,25,104),(9,62,26,103),(10,61,27,102),(11,60,28,101),(12,59,15,100),(13,58,16,99),(14,57,17,112),(29,113,213,163),(30,126,214,162),(31,125,215,161),(32,124,216,160),(33,123,217,159),(34,122,218,158),(35,121,219,157),(36,120,220,156),(37,119,221,155),(38,118,222,168),(39,117,223,167),(40,116,224,166),(41,115,211,165),(42,114,212,164),(43,196,204,170),(44,195,205,169),(45,194,206,182),(46,193,207,181),(47,192,208,180),(48,191,209,179),(49,190,210,178),(50,189,197,177),(51,188,198,176),(52,187,199,175),(53,186,200,174),(54,185,201,173),(55,184,202,172),(56,183,203,171),(71,93,151,131),(72,92,152,130),(73,91,153,129),(74,90,154,128),(75,89,141,127),(76,88,142,140),(77,87,143,139),(78,86,144,138),(79,85,145,137),(80,98,146,136),(81,97,147,135),(82,96,148,134),(83,95,149,133),(84,94,150,132)], [(1,185),(2,184),(3,183),(4,196),(5,195),(6,194),(7,193),(8,192),(9,191),(10,190),(11,189),(12,188),(13,187),(14,186),(15,176),(16,175),(17,174),(18,173),(19,172),(20,171),(21,170),(22,169),(23,182),(24,181),(25,180),(26,179),(27,178),(28,177),(29,154),(30,153),(31,152),(32,151),(33,150),(34,149),(35,148),(36,147),(37,146),(38,145),(39,144),(40,143),(41,142),(42,141),(43,67),(44,66),(45,65),(46,64),(47,63),(48,62),(49,61),(50,60),(51,59),(52,58),(53,57),(54,70),(55,69),(56,68),(71,216),(72,215),(73,214),(74,213),(75,212),(76,211),(77,224),(78,223),(79,222),(80,221),(81,220),(82,219),(83,218),(84,217),(85,118),(86,117),(87,116),(88,115),(89,114),(90,113),(91,126),(92,125),(93,124),(94,123),(95,122),(96,121),(97,120),(98,119),(99,199),(100,198),(101,197),(102,210),(103,209),(104,208),(105,207),(106,206),(107,205),(108,204),(109,203),(110,202),(111,201),(112,200),(127,164),(128,163),(129,162),(130,161),(131,160),(132,159),(133,158),(134,157),(135,156),(136,155),(137,168),(138,167),(139,166),(140,165)]])
88 conjugacy classes
| class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
| order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
| size | 1 | 1 | ··· | 1 | 4 | 4 | 14 | 14 | 14 | 14 | 28 | 28 | 2 | 2 | 2 | 2 | 4 | 4 | 14 | 14 | 14 | 14 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
88 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | C4○D4 | D14 | D14 | D14 | C4○D28 | D4×D7 |
| kernel | C2×D14⋊D4 | D14⋊D4 | C2×Dic7⋊C4 | C2×D14⋊C4 | C14×C22⋊C4 | D7×C22×C4 | C22×D28 | C22×C7⋊D4 | C2×Dic7 | C22×D7 | C2×C22⋊C4 | C2×C14 | C22⋊C4 | C22×C4 | C24 | C22 | C22 |
| # reps | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 3 | 4 | 12 | 6 | 3 | 24 | 12 |
Matrix representation of C2×D14⋊D4 ►in GL6(𝔽29)
| 28 | 0 | 0 | 0 | 0 | 0 |
| 0 | 28 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 25 | 4 | 0 | 0 | 0 | 0 |
| 25 | 11 | 0 | 0 | 0 | 0 |
| 0 | 0 | 4 | 25 | 0 | 0 |
| 0 | 0 | 4 | 18 | 0 | 0 |
| 0 | 0 | 0 | 0 | 28 | 0 |
| 0 | 0 | 0 | 0 | 0 | 28 |
| 1 | 18 | 0 | 0 | 0 | 0 |
| 0 | 28 | 0 | 0 | 0 | 0 |
| 0 | 0 | 28 | 11 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 28 | 0 |
| 0 | 0 | 0 | 0 | 18 | 1 |
| 25 | 11 | 0 | 0 | 0 | 0 |
| 25 | 4 | 0 | 0 | 0 | 0 |
| 0 | 0 | 19 | 13 | 0 | 0 |
| 0 | 0 | 19 | 10 | 0 | 0 |
| 0 | 0 | 0 | 0 | 28 | 0 |
| 0 | 0 | 0 | 0 | 0 | 28 |
| 4 | 18 | 0 | 0 | 0 | 0 |
| 4 | 25 | 0 | 0 | 0 | 0 |
| 0 | 0 | 3 | 22 | 0 | 0 |
| 0 | 0 | 26 | 26 | 0 | 0 |
| 0 | 0 | 0 | 0 | 9 | 1 |
| 0 | 0 | 0 | 0 | 7 | 20 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[25,25,0,0,0,0,4,11,0,0,0,0,0,0,4,4,0,0,0,0,25,18,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,18,28,0,0,0,0,0,0,28,0,0,0,0,0,11,1,0,0,0,0,0,0,28,18,0,0,0,0,0,1],[25,25,0,0,0,0,11,4,0,0,0,0,0,0,19,19,0,0,0,0,13,10,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[4,4,0,0,0,0,18,25,0,0,0,0,0,0,3,26,0,0,0,0,22,26,0,0,0,0,0,0,9,7,0,0,0,0,1,20] >;
C2×D14⋊D4 in GAP, Magma, Sage, TeX
C_2\times D_{14}\rtimes D_4 % in TeX
G:=Group("C2xD14:D4"); // GroupNames label
G:=SmallGroup(448,942);
// by ID
G=gap.SmallGroup(448,942);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,1571,297,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^14=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=b^12*c,e*c*e=b^5*c,e*d*e=d^-1>;
// generators/relations