Extensions 1→N→G→Q→1 with N=C14 and Q=M5(2)

Direct product G=N×Q with N=C14 and Q=M5(2)

Semidirect products G=N:Q with N=C14 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C141M5(2) = C2×C16⋊D7φ: M5(2)/C16C2 ⊆ Aut C14224C14:1M5(2)448,434
C142M5(2) = C2×C28.C8φ: M5(2)/C2×C8C2 ⊆ Aut C14224C14:2M5(2)448,631

Non-split extensions G=N.Q with N=C14 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C14.1M5(2) = Dic7⋊C16φ: M5(2)/C16C2 ⊆ Aut C14448C14.1M5(2)448,58
C14.2M5(2) = C1129C4φ: M5(2)/C16C2 ⊆ Aut C14448C14.2M5(2)448,59
C14.3M5(2) = D14⋊C16φ: M5(2)/C16C2 ⊆ Aut C14224C14.3M5(2)448,64
C14.4M5(2) = C56.C8φ: M5(2)/C2×C8C2 ⊆ Aut C14448C14.4M5(2)448,18
C14.5M5(2) = C28⋊C16φ: M5(2)/C2×C8C2 ⊆ Aut C14448C14.5M5(2)448,19
C14.6M5(2) = C56.91D4φ: M5(2)/C2×C8C2 ⊆ Aut C14224C14.6M5(2)448,106
C14.7M5(2) = C7×C165C4central extension (φ=1)448C14.7M5(2)448,150
C14.8M5(2) = C7×C22⋊C16central extension (φ=1)224C14.8M5(2)448,152
C14.9M5(2) = C7×C4⋊C16central extension (φ=1)448C14.9M5(2)448,167