direct product, p-group, abelian, monomial
Aliases: C2×C8, SmallGroup(16,5)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2×C8 |
C1 — C2×C8 |
C1 — C2×C8 |
Generators and relations for C2×C8
G = < a,b | a2=b8=1, ab=ba >
Character table of C2×C8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | i | i | -i | -i | ζ87 | ζ8 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ8 | linear of order 8 |
ρ6 | 1 | -1 | -1 | 1 | i | -i | -i | i | ζ83 | ζ85 | ζ85 | ζ8 | ζ83 | ζ87 | ζ87 | ζ8 | linear of order 8 |
ρ7 | 1 | -1 | 1 | -1 | -i | -i | i | i | ζ85 | ζ83 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ83 | linear of order 8 |
ρ8 | 1 | -1 | -1 | 1 | -i | i | i | -i | ζ8 | ζ87 | ζ87 | ζ83 | ζ8 | ζ85 | ζ85 | ζ83 | linear of order 8 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | i | i | -i | -i | ζ83 | ζ85 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ85 | linear of order 8 |
ρ12 | 1 | -1 | -1 | 1 | i | -i | -i | i | ζ87 | ζ8 | ζ8 | ζ85 | ζ87 | ζ83 | ζ83 | ζ85 | linear of order 8 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -i | -i | i | i | ζ8 | ζ87 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ87 | linear of order 8 |
ρ16 | 1 | -1 | -1 | 1 | -i | i | i | -i | ζ85 | ζ83 | ζ83 | ζ87 | ζ85 | ζ8 | ζ8 | ζ87 | linear of order 8 |
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,5);
C2×C8 is a maximal subgroup of
C8⋊C4 C22⋊C8 D4⋊C4 Q8⋊C4 C4⋊C8 C4.Q8 C2.D8 C8.C4 M5(2) C8○D4 C4○D8 C3⋊S3⋊3C8
Dp⋊C8, p=1 mod 4: D5⋊C8 D13⋊C8 C68.C4 D29⋊C8 ...
C2×C8 is a maximal quotient of
C22⋊C8 C4⋊C8 M5(2) C3⋊S3⋊3C8
Dp⋊C8, p=1 mod 4: D5⋊C8 D13⋊C8 C68.C4 D29⋊C8 ...
action | f(x) | Disc(f) |
---|---|---|
16T5 | x16+1 | 264 |
Matrix representation of C2×C8 ►in GL2(𝔽17) generated by
16 | 0 |
0 | 16 |
1 | 0 |
0 | 9 |
G:=sub<GL(2,GF(17))| [16,0,0,16],[1,0,0,9] >;
C2×C8 in GAP, Magma, Sage, TeX
C_2\times C_8
% in TeX
G:=Group("C2xC8");
// GroupNames label
G:=SmallGroup(16,5);
// by ID
G=gap.SmallGroup(16,5);
# by ID
G:=PCGroup([4,-2,2,-2,-2,16,34]);
// Polycyclic
G:=Group<a,b|a^2=b^8=1,a*b=b*a>;
// generators/relations
Export
Subgroup lattice of C2×C8 in TeX
Character table of C2×C8 in TeX