Extensions 1→N→G→Q→1 with N=C4xC28 and Q=C4

Direct product G=NxQ with N=C4xC28 and Q=C4
dρLabelID
C42xC28448C4^2xC28448,782

Semidirect products G=N:Q with N=C4xC28 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C4xC28):1C4 = C42:Dic7φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28):1C4448,88
(C4xC28):2C4 = C42:2Dic7φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28):2C4448,98
(C4xC28):3C4 = C42:3Dic7φ: C4/C1C4 ⊆ Aut C4xC28564(C4xC28):3C4448,102
(C4xC28):4C4 = C7xC4.9C42φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28):4C4448,141
(C4xC28):5C4 = C7xC42:C4φ: C4/C1C4 ⊆ Aut C4xC28564(C4xC28):5C4448,157
(C4xC28):6C4 = C7xC42:3C4φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28):6C4448,158
(C4xC28):7C4 = C42:5Dic7φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):7C4448,471
(C4xC28):8C4 = C7xC42:4C4φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):8C4448,784
(C4xC28):9C4 = C7xC42:5C4φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):9C4448,791
(C4xC28):10C4 = C42:8Dic7φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):10C4448,469
(C4xC28):11C4 = C42:9Dic7φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):11C4448,470
(C4xC28):12C4 = C28.8C42φ: C4/C2C2 ⊆ Aut C4xC28112(C4xC28):12C4448,80
(C4xC28):13C4 = C4xC4:Dic7φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):13C4448,468
(C4xC28):14C4 = C42xDic7φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):14C4448,464
(C4xC28):15C4 = C42:4Dic7φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):15C4448,466
(C4xC28):16C4 = C7xC42:6C4φ: C4/C2C2 ⊆ Aut C4xC28112(C4xC28):16C4448,143
(C4xC28):17C4 = C4:C4xC28φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):17C4448,786
(C4xC28):18C4 = C7xC42:8C4φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):18C4448,790
(C4xC28):19C4 = C7xC42:9C4φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28):19C4448,792

Non-split extensions G=N.Q with N=C4xC28 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C4xC28).1C4 = C28.15C42φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28).1C4448,23
(C4xC28).2C4 = C42.Dic7φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28).2C4448,99
(C4xC28).3C4 = C42.3Dic7φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28).3C4448,105
(C4xC28).4C4 = C7xC16:C4φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28).4C4448,151
(C4xC28).5C4 = C7xC42.C4φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28).5C4448,159
(C4xC28).6C4 = C7xC42.3C4φ: C4/C1C4 ⊆ Aut C4xC281124(C4xC28).6C4448,160
(C4xC28).7C4 = C7xC16:5C4φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).7C4448,150
(C4xC28).8C4 = C14xC8:C4φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).8C4448,811
(C4xC28).9C4 = C7xC42.12C4φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).9C4448,839
(C4xC28).10C4 = C7xC42.6C4φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).10C4448,840
(C4xC28).11C4 = C28:7M4(2)φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).11C4448,458
(C4xC28).12C4 = C42.7Dic7φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).12C4448,460
(C4xC28).13C4 = C28:C16φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).13C4448,19
(C4xC28).14C4 = C56.16Q8φ: C4/C2C2 ⊆ Aut C4xC281122(C4xC28).14C4448,20
(C4xC28).15C4 = C4xC4.Dic7φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).15C4448,456
(C4xC28).16C4 = C2xC28:C8φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).16C4448,457
(C4xC28).17C4 = C4xC7:C16φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).17C4448,17
(C4xC28).18C4 = C56.C8φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).18C4448,18
(C4xC28).19C4 = C2xC4xC7:C8φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).19C4448,454
(C4xC28).20C4 = C2xC42.D7φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).20C4448,455
(C4xC28).21C4 = C42.6Dic7φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).21C4448,459
(C4xC28).22C4 = C7xC4:C16φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).22C4448,167
(C4xC28).23C4 = C7xC8.C8φ: C4/C2C2 ⊆ Aut C4xC281122(C4xC28).23C4448,168
(C4xC28).24C4 = M4(2)xC28φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).24C4448,812
(C4xC28).25C4 = C14xC4:C8φ: C4/C2C2 ⊆ Aut C4xC28448(C4xC28).25C4448,830
(C4xC28).26C4 = C7xC4:M4(2)φ: C4/C2C2 ⊆ Aut C4xC28224(C4xC28).26C4448,831

׿
x
:
Z
F
o
wr
Q
<