Extensions 1→N→G→Q→1 with N=C22 and Q=C4×C28

Direct product G=N×Q with N=C22 and Q=C4×C28

Semidirect products G=N:Q with N=C22 and Q=C4×C28
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×C28) = C22⋊C4×C28φ: C4×C28/C2×C28C2 ⊆ Aut C22224C2^2:(C4xC28)448,785

Non-split extensions G=N.Q with N=C22 and Q=C4×C28
extensionφ:Q→Aut NdρLabelID
C22.1(C4×C28) = C7×C23.9D4φ: C4×C28/C2×C28C2 ⊆ Aut C22112C2^2.1(C4xC28)448,146
C22.2(C4×C28) = C7×C22.C42φ: C4×C28/C2×C28C2 ⊆ Aut C22224C2^2.2(C4xC28)448,147
C22.3(C4×C28) = C7×M4(2)⋊4C4φ: C4×C28/C2×C28C2 ⊆ Aut C221124C2^2.3(C4xC28)448,148
C22.4(C4×C28) = M4(2)×C28φ: C4×C28/C2×C28C2 ⊆ Aut C22224C2^2.4(C4xC28)448,812
C22.5(C4×C28) = C7×C82M4(2)φ: C4×C28/C2×C28C2 ⊆ Aut C22224C2^2.5(C4xC28)448,813
C22.6(C4×C28) = C7×C8⋊C8central extension (φ=1)448C2^2.6(C4xC28)448,126
C22.7(C4×C28) = C7×C22.7C42central extension (φ=1)448C2^2.7(C4xC28)448,140
C22.8(C4×C28) = C14×C2.C42central extension (φ=1)448C2^2.8(C4xC28)448,783
C22.9(C4×C28) = C14×C8⋊C4central extension (φ=1)448C2^2.9(C4xC28)448,811