direct product, abelian, monomial, 2-elementary
Aliases: C2×C28, SmallGroup(56,8)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C28 |
C1 — C2×C28 |
C1 — C2×C28 |
Generators and relations for C2×C28
G = < a,b | a2=b28=1, ab=ba >
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
G:=sub<Sym(56)| (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)>;
G:=Group( (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56) );
G=PermutationGroup([[(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)]])
C2×C28 is a maximal subgroup of
C4.Dic7 Dic7⋊C4 C4⋊Dic7 D14⋊C4 C4○D28
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 7A | ··· | 7F | 14A | ··· | 14R | 28A | ··· | 28X |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C4 | C7 | C14 | C14 | C28 |
kernel | C2×C28 | C28 | C2×C14 | C14 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 4 | 6 | 12 | 6 | 24 |
Matrix representation of C2×C28 ►in GL2(𝔽29) generated by
28 | 0 |
0 | 28 |
24 | 0 |
0 | 2 |
G:=sub<GL(2,GF(29))| [28,0,0,28],[24,0,0,2] >;
C2×C28 in GAP, Magma, Sage, TeX
C_2\times C_{28}
% in TeX
G:=Group("C2xC28");
// GroupNames label
G:=SmallGroup(56,8);
// by ID
G=gap.SmallGroup(56,8);
# by ID
G:=PCGroup([4,-2,-2,-7,-2,112]);
// Polycyclic
G:=Group<a,b|a^2=b^28=1,a*b=b*a>;
// generators/relations
Export