Extensions 1→N→G→Q→1 with N=D4×Dic7 and Q=C2

Direct product G=N×Q with N=D4×Dic7 and Q=C2
dρLabelID
C2×D4×Dic7224C2xD4xDic7448,1248

Semidirect products G=N:Q with N=D4×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×Dic7)⋊1C2 = Dic74D8φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):1C2448,290
(D4×Dic7)⋊2C2 = D4⋊D7⋊C4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):2C2448,319
(D4×Dic7)⋊3C2 = D8×Dic7φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):3C2448,683
(D4×Dic7)⋊4C2 = Dic7⋊D8φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):4C2448,684
(D4×Dic7)⋊5C2 = D8⋊Dic7φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):5C2448,686
(D4×Dic7)⋊6C2 = (C2×D8).D7φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):6C2448,687
(D4×Dic7)⋊7C2 = (C7×D4).D4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):7C2448,699
(D4×Dic7)⋊8C2 = C4211D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):8C2448,998
(D4×Dic7)⋊9C2 = C42.108D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):9C2448,999
(D4×Dic7)⋊10C2 = C24.56D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):10C2448,1039
(D4×Dic7)⋊11C2 = C24.32D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):11C2448,1040
(D4×Dic7)⋊12C2 = C24.33D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):12C2448,1044
(D4×Dic7)⋊13C2 = C24.35D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):13C2448,1046
(D4×Dic7)⋊14C2 = C28⋊(C4○D4)φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):14C2448,1049
(D4×Dic7)⋊15C2 = Dic1419D4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):15C2448,1051
(D4×Dic7)⋊16C2 = C4⋊C4.178D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):16C2448,1053
(D4×Dic7)⋊17C2 = C14.342+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):17C2448,1054
(D4×Dic7)⋊18C2 = C14.352+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):18C2448,1055
(D4×Dic7)⋊19C2 = C14.712- 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):19C2448,1056
(D4×Dic7)⋊20C2 = C4⋊C421D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):20C2448,1059
(D4×Dic7)⋊21C2 = C14.732- 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):21C2448,1064
(D4×Dic7)⋊22C2 = C14.432+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):22C2448,1067
(D4×Dic7)⋊23C2 = C14.452+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):23C2448,1069
(D4×Dic7)⋊24C2 = C14.462+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):24C2448,1070
(D4×Dic7)⋊25C2 = C14.1152+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):25C2448,1071
(D4×Dic7)⋊26C2 = C14.472+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):26C2448,1072
(D4×Dic7)⋊27C2 = C4⋊C4.197D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):27C2448,1102
(D4×Dic7)⋊28C2 = C14.1222+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):28C2448,1111
(D4×Dic7)⋊29C2 = C14.852- 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):29C2448,1118
(D4×Dic7)⋊30C2 = C42.234D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):30C2448,1133
(D4×Dic7)⋊31C2 = C42.143D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):31C2448,1134
(D4×Dic7)⋊32C2 = C42.144D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):32C2448,1135
(D4×Dic7)⋊33C2 = C42.166D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):33C2448,1166
(D4×Dic7)⋊34C2 = C42.238D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):34C2448,1169
(D4×Dic7)⋊35C2 = Dic1411D4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):35C2448,1171
(D4×Dic7)⋊36C2 = C42.168D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):36C2448,1172
(D4×Dic7)⋊37C2 = C24.38D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):37C2448,1251
(D4×Dic7)⋊38C2 = D4×C7⋊D4φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):38C2448,1254
(D4×Dic7)⋊39C2 = C24.42D14φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):39C2448,1259
(D4×Dic7)⋊40C2 = C14.1042- 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):40C2448,1277
(D4×Dic7)⋊41C2 = C14.1062- 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7):41C2448,1280
(D4×Dic7)⋊42C2 = C14.1452+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic7112(D4xDic7):42C2448,1282
(D4×Dic7)⋊43C2 = C4×D42D7φ: trivial image224(D4xDic7):43C2448,989
(D4×Dic7)⋊44C2 = C4×D4×D7φ: trivial image112(D4xDic7):44C2448,997
(D4×Dic7)⋊45C2 = C4○D4×Dic7φ: trivial image224(D4xDic7):45C2448,1279

Non-split extensions G=N.Q with N=D4×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×Dic7).1C2 = D4.D7⋊C4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).1C2448,291
(D4×Dic7).2C2 = Dic76SD16φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).2C2448,292
(D4×Dic7).3C2 = Dic7.D8φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).3C2448,293
(D4×Dic7).4C2 = D4⋊Dic14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).4C2448,295
(D4×Dic7).5C2 = D4.Dic14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).5C2448,297
(D4×Dic7).6C2 = D4.2Dic14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).6C2448,300
(D4×Dic7).7C2 = SD16×Dic7φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).7C2448,695
(D4×Dic7).8C2 = Dic73SD16φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).8C2448,696
(D4×Dic7).9C2 = SD16⋊Dic7φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).9C2448,698
(D4×Dic7).10C2 = D4×Dic14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).10C2448,990
(D4×Dic7).11C2 = D45Dic14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).11C2448,992
(D4×Dic7).12C2 = D46Dic14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).12C2448,996
(D4×Dic7).13C2 = C14.802- 1+4φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).13C2448,1103
(D4×Dic7).14C2 = C42.139D14φ: C2/C1C2 ⊆ Out D4×Dic7224(D4xDic7).14C2448,1124

׿
×
𝔽