Copied to
clipboard

G = C4⋊C421D14order 448 = 26·7

4th semidirect product of C4⋊C4 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C421D14, (C4×D7)⋊12D4, (C2×D4)⋊22D14, C4⋊D426D7, C4.182(D4×D7), D143(C4○D4), C23⋊D148C2, C282D417C2, C22⋊C426D14, (D4×Dic7)⋊20C2, D14.40(C2×D4), C28.226(C2×D4), D142Q820C2, Dic74D48C2, (D4×C14)⋊11C22, C4⋊Dic730C22, Dic7.63(C2×D4), C14.65(C22×D4), D14.D418C2, C28.48D433C2, C222(D42D7), (C2×C28).594C23, (C2×C14).150C24, Dic7⋊C428C22, D14⋊C4.14C22, C74(C22.19C24), (C4×Dic7)⋊20C22, (C22×C4).368D14, C23.D722C22, C23.15(C22×D7), (C2×Dic14)⋊24C22, (C22×C14).19C23, (C2×Dic7).71C23, C22.171(C23×D7), (C22×C28).240C22, (C22×Dic7)⋊19C22, (C22×D7).185C23, (C23×D7).107C22, C2.38(C2×D4×D7), (D7×C22×C4)⋊4C2, (C7×C4⋊C4)⋊9C22, C2.38(D7×C4○D4), C4⋊C47D719C2, (C2×C14)⋊5(C4○D4), (C7×C4⋊D4)⋊12C2, (C2×D42D7)⋊12C2, C14.151(C2×C4○D4), C2.36(C2×D42D7), (C2×C4×D7).247C22, (C7×C22⋊C4)⋊11C22, (C2×C4).294(C22×D7), (C2×C7⋊D4).27C22, SmallGroup(448,1059)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4⋊C421D14
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C4⋊C421D14
C7C2×C14 — C4⋊C421D14
C1C22C4⋊D4

Generators and relations for C4⋊C421D14
 G = < a,b,c,d | a4=b4=c14=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 1548 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, Dic14, C4×D7, C4×D7, C2×Dic7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C22×C14, C22.19C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, C4⋊Dic7, D14⋊C4, C23.D7, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×C4×D7, D42D7, C22×Dic7, C22×Dic7, C2×C7⋊D4, C22×C28, D4×C14, D4×C14, C23×D7, Dic74D4, D14.D4, C4⋊C47D7, D142Q8, C28.48D4, D4×Dic7, C23⋊D14, C282D4, C7×C4⋊D4, D7×C22×C4, C2×D42D7, C4⋊C421D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, C22×D7, C22.19C24, D4×D7, D42D7, C23×D7, C2×D4×D7, C2×D42D7, D7×C4○D4, C4⋊C421D14

Smallest permutation representation of C4⋊C421D14
On 112 points
Generators in S112
(1 47 19 42)(2 48 20 36)(3 49 21 37)(4 43 15 38)(5 44 16 39)(6 45 17 40)(7 46 18 41)(8 52 22 35)(9 53 23 29)(10 54 24 30)(11 55 25 31)(12 56 26 32)(13 50 27 33)(14 51 28 34)(57 77 106 91)(58 78 107 92)(59 79 108 93)(60 80 109 94)(61 81 110 95)(62 82 111 96)(63 83 112 97)(64 84 99 98)(65 71 100 85)(66 72 101 86)(67 73 102 87)(68 74 103 88)(69 75 104 89)(70 76 105 90)
(1 62 26 69)(2 70 27 63)(3 64 28 57)(4 58 22 65)(5 66 23 59)(6 60 24 67)(7 68 25 61)(8 100 15 107)(9 108 16 101)(10 102 17 109)(11 110 18 103)(12 104 19 111)(13 112 20 105)(14 106 21 99)(29 93 44 86)(30 87 45 94)(31 95 46 88)(32 89 47 96)(33 97 48 90)(34 91 49 98)(35 85 43 92)(36 76 50 83)(37 84 51 77)(38 78 52 71)(39 72 53 79)(40 80 54 73)(41 74 55 81)(42 82 56 75)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(29 34)(30 33)(31 32)(36 40)(37 39)(41 42)(44 49)(45 48)(46 47)(50 54)(51 53)(55 56)(57 108)(58 107)(59 106)(60 105)(61 104)(62 103)(63 102)(64 101)(65 100)(66 99)(67 112)(68 111)(69 110)(70 109)(71 85)(72 98)(73 97)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)(81 89)(82 88)(83 87)(84 86)

G:=sub<Sym(112)| (1,47,19,42)(2,48,20,36)(3,49,21,37)(4,43,15,38)(5,44,16,39)(6,45,17,40)(7,46,18,41)(8,52,22,35)(9,53,23,29)(10,54,24,30)(11,55,25,31)(12,56,26,32)(13,50,27,33)(14,51,28,34)(57,77,106,91)(58,78,107,92)(59,79,108,93)(60,80,109,94)(61,81,110,95)(62,82,111,96)(63,83,112,97)(64,84,99,98)(65,71,100,85)(66,72,101,86)(67,73,102,87)(68,74,103,88)(69,75,104,89)(70,76,105,90), (1,62,26,69)(2,70,27,63)(3,64,28,57)(4,58,22,65)(5,66,23,59)(6,60,24,67)(7,68,25,61)(8,100,15,107)(9,108,16,101)(10,102,17,109)(11,110,18,103)(12,104,19,111)(13,112,20,105)(14,106,21,99)(29,93,44,86)(30,87,45,94)(31,95,46,88)(32,89,47,96)(33,97,48,90)(34,91,49,98)(35,85,43,92)(36,76,50,83)(37,84,51,77)(38,78,52,71)(39,72,53,79)(40,80,54,73)(41,74,55,81)(42,82,56,75), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,34)(30,33)(31,32)(36,40)(37,39)(41,42)(44,49)(45,48)(46,47)(50,54)(51,53)(55,56)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,112)(68,111)(69,110)(70,109)(71,85)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86)>;

G:=Group( (1,47,19,42)(2,48,20,36)(3,49,21,37)(4,43,15,38)(5,44,16,39)(6,45,17,40)(7,46,18,41)(8,52,22,35)(9,53,23,29)(10,54,24,30)(11,55,25,31)(12,56,26,32)(13,50,27,33)(14,51,28,34)(57,77,106,91)(58,78,107,92)(59,79,108,93)(60,80,109,94)(61,81,110,95)(62,82,111,96)(63,83,112,97)(64,84,99,98)(65,71,100,85)(66,72,101,86)(67,73,102,87)(68,74,103,88)(69,75,104,89)(70,76,105,90), (1,62,26,69)(2,70,27,63)(3,64,28,57)(4,58,22,65)(5,66,23,59)(6,60,24,67)(7,68,25,61)(8,100,15,107)(9,108,16,101)(10,102,17,109)(11,110,18,103)(12,104,19,111)(13,112,20,105)(14,106,21,99)(29,93,44,86)(30,87,45,94)(31,95,46,88)(32,89,47,96)(33,97,48,90)(34,91,49,98)(35,85,43,92)(36,76,50,83)(37,84,51,77)(38,78,52,71)(39,72,53,79)(40,80,54,73)(41,74,55,81)(42,82,56,75), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,34)(30,33)(31,32)(36,40)(37,39)(41,42)(44,49)(45,48)(46,47)(50,54)(51,53)(55,56)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,112)(68,111)(69,110)(70,109)(71,85)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86) );

G=PermutationGroup([[(1,47,19,42),(2,48,20,36),(3,49,21,37),(4,43,15,38),(5,44,16,39),(6,45,17,40),(7,46,18,41),(8,52,22,35),(9,53,23,29),(10,54,24,30),(11,55,25,31),(12,56,26,32),(13,50,27,33),(14,51,28,34),(57,77,106,91),(58,78,107,92),(59,79,108,93),(60,80,109,94),(61,81,110,95),(62,82,111,96),(63,83,112,97),(64,84,99,98),(65,71,100,85),(66,72,101,86),(67,73,102,87),(68,74,103,88),(69,75,104,89),(70,76,105,90)], [(1,62,26,69),(2,70,27,63),(3,64,28,57),(4,58,22,65),(5,66,23,59),(6,60,24,67),(7,68,25,61),(8,100,15,107),(9,108,16,101),(10,102,17,109),(11,110,18,103),(12,104,19,111),(13,112,20,105),(14,106,21,99),(29,93,44,86),(30,87,45,94),(31,95,46,88),(32,89,47,96),(33,97,48,90),(34,91,49,98),(35,85,43,92),(36,76,50,83),(37,84,51,77),(38,78,52,71),(39,72,53,79),(40,80,54,73),(41,74,55,81),(42,82,56,75)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(29,34),(30,33),(31,32),(36,40),(37,39),(41,42),(44,49),(45,48),(46,47),(50,54),(51,53),(55,56),(57,108),(58,107),(59,106),(60,105),(61,104),(62,103),(63,102),(64,101),(65,100),(66,99),(67,112),(68,111),(69,110),(70,109),(71,85),(72,98),(73,97),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90),(81,89),(82,88),(83,87),(84,86)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14O14P···14U28A···28L28M···28R
order122222222222444444444444444477714···1414···1414···1428···2828···28
size111122441414141422224477771414282828282222···24···48···84···48···8

70 irreducible representations

dim11111111111122222222444
type+++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4○D4C4○D4D14D14D14D14D4×D7D42D7D7×C4○D4
kernelC4⋊C421D14Dic74D4D14.D4C4⋊C47D7D142Q8C28.48D4D4×Dic7C23⋊D14C282D4C7×C4⋊D4D7×C22×C4C2×D42D7C4×D7C4⋊D4D14C2×C14C22⋊C4C4⋊C4C22×C4C2×D4C4C22C2
# reps12211122111143446339666

Matrix representation of C4⋊C421D14 in GL6(𝔽29)

1700000
1120000
0028000
0002800
0000170
0000012
,
1720000
1120000
001000
000100
0000012
0000120
,
100000
010000
00272100
00162000
000010
0000028
,
100000
12280000
0082800
0052100
000010
0000028

G:=sub<GL(6,GF(29))| [17,1,0,0,0,0,0,12,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,17,0,0,0,0,0,0,12],[17,1,0,0,0,0,2,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,16,0,0,0,0,21,20,0,0,0,0,0,0,1,0,0,0,0,0,0,28],[1,12,0,0,0,0,0,28,0,0,0,0,0,0,8,5,0,0,0,0,28,21,0,0,0,0,0,0,1,0,0,0,0,0,0,28] >;

C4⋊C421D14 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{21}D_{14}
% in TeX

G:=Group("C4:C4:21D14");
// GroupNames label

G:=SmallGroup(448,1059);
// by ID

G=gap.SmallGroup(448,1059);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,1123,794,297,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽