Extensions 1→N→G→Q→1 with N=Q8xDic7 and Q=C2

Direct product G=NxQ with N=Q8xDic7 and Q=C2
dρLabelID
C2xQ8xDic7448C2xQ8xDic7448,1264

Semidirect products G=N:Q with N=Q8xDic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xDic7):1C2 = Dic7:7SD16φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):1C2448,322
(Q8xDic7):2C2 = Q8:D7:C4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):2C2448,351
(Q8xDic7):3C2 = SD16xDic7φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):3C2448,695
(Q8xDic7):4C2 = Dic7:5SD16φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):4C2448,697
(Q8xDic7):5C2 = SD16:Dic7φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):5C2448,698
(Q8xDic7):6C2 = (C7xQ8).D4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):6C2448,700
(Q8xDic7):7C2 = (C2xQ16):D7φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):7C2448,719
(Q8xDic7):8C2 = C42.125D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):8C2448,1025
(Q8xDic7):9C2 = C42.126D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):9C2448,1027
(Q8xDic7):10C2 = (Q8xDic7):C2φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):10C2448,1075
(Q8xDic7):11C2 = C22:Q8:25D7φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):11C2448,1077
(Q8xDic7):12C2 = C14.152- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):12C2448,1078
(Q8xDic7):13C2 = C14.1182+ 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):13C2448,1088
(Q8xDic7):14C2 = C14.212- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):14C2448,1092
(Q8xDic7):15C2 = C14.232- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):15C2448,1094
(Q8xDic7):16C2 = C14.772- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):16C2448,1095
(Q8xDic7):17C2 = C14.242- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):17C2448,1096
(Q8xDic7):18C2 = C42.139D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):18C2448,1124
(Q8xDic7):19C2 = C42.234D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):19C2448,1133
(Q8xDic7):20C2 = C42.143D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):20C2448,1134
(Q8xDic7):21C2 = C42.144D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):21C2448,1135
(Q8xDic7):22C2 = C42.241D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):22C2448,1181
(Q8xDic7):23C2 = C42.176D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):23C2448,1184
(Q8xDic7):24C2 = C42.177D14φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):24C2448,1185
(Q8xDic7):25C2 = C14.422- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):25C2448,1265
(Q8xDic7):26C2 = Q8xC7:D4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):26C2448,1268
(Q8xDic7):27C2 = C14.452- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):27C2448,1270
(Q8xDic7):28C2 = C14.1062- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):28C2448,1280
(Q8xDic7):29C2 = C14.1072- 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):29C2448,1284
(Q8xDic7):30C2 = C14.1482+ 1+4φ: C2/C1C2 ⊆ Out Q8xDic7224(Q8xDic7):30C2448,1287
(Q8xDic7):31C2 = C4xQ8xD7φ: trivial image224(Q8xDic7):31C2448,1024
(Q8xDic7):32C2 = C4xQ8:2D7φ: trivial image224(Q8xDic7):32C2448,1026
(Q8xDic7):33C2 = C4oD4xDic7φ: trivial image224(Q8xDic7):33C2448,1279

Non-split extensions G=N.Q with N=Q8xDic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xDic7).1C2 = C7:Q16:C4φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).1C2448,323
(Q8xDic7).2C2 = Dic7:4Q16φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).2C2448,324
(Q8xDic7).3C2 = Q8:Dic14φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).3C2448,325
(Q8xDic7).4C2 = Dic7.Q16φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).4C2448,328
(Q8xDic7).5C2 = Q8.Dic14φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).5C2448,330
(Q8xDic7).6C2 = Q8.2Dic14φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).6C2448,333
(Q8xDic7).7C2 = Dic7:3Q16φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).7C2448,716
(Q8xDic7).8C2 = Q16xDic7φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).8C2448,717
(Q8xDic7).9C2 = Q16:Dic7φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).9C2448,718
(Q8xDic7).10C2 = Q8xDic14φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).10C2448,1019
(Q8xDic7).11C2 = Q8:5Dic14φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).11C2448,1022
(Q8xDic7).12C2 = Q8:6Dic14φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).12C2448,1023
(Q8xDic7).13C2 = Dic14:8Q8φ: C2/C1C2 ⊆ Out Q8xDic7448(Q8xDic7).13C2448,1174

׿
x
:
Z
F
o
wr
Q
<