Extensions 1→N→G→Q→1 with N=Q8×Dic7 and Q=C2

Direct product G=N×Q with N=Q8×Dic7 and Q=C2
dρLabelID
C2×Q8×Dic7448C2xQ8xDic7448,1264

Semidirect products G=N:Q with N=Q8×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×Dic7)⋊1C2 = Dic77SD16φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):1C2448,322
(Q8×Dic7)⋊2C2 = Q8⋊D7⋊C4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):2C2448,351
(Q8×Dic7)⋊3C2 = SD16×Dic7φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):3C2448,695
(Q8×Dic7)⋊4C2 = Dic75SD16φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):4C2448,697
(Q8×Dic7)⋊5C2 = SD16⋊Dic7φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):5C2448,698
(Q8×Dic7)⋊6C2 = (C7×Q8).D4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):6C2448,700
(Q8×Dic7)⋊7C2 = (C2×Q16)⋊D7φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):7C2448,719
(Q8×Dic7)⋊8C2 = C42.125D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):8C2448,1025
(Q8×Dic7)⋊9C2 = C42.126D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):9C2448,1027
(Q8×Dic7)⋊10C2 = (Q8×Dic7)⋊C2φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):10C2448,1075
(Q8×Dic7)⋊11C2 = C22⋊Q825D7φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):11C2448,1077
(Q8×Dic7)⋊12C2 = C14.152- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):12C2448,1078
(Q8×Dic7)⋊13C2 = C14.1182+ 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):13C2448,1088
(Q8×Dic7)⋊14C2 = C14.212- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):14C2448,1092
(Q8×Dic7)⋊15C2 = C14.232- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):15C2448,1094
(Q8×Dic7)⋊16C2 = C14.772- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):16C2448,1095
(Q8×Dic7)⋊17C2 = C14.242- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):17C2448,1096
(Q8×Dic7)⋊18C2 = C42.139D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):18C2448,1124
(Q8×Dic7)⋊19C2 = C42.234D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):19C2448,1133
(Q8×Dic7)⋊20C2 = C42.143D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):20C2448,1134
(Q8×Dic7)⋊21C2 = C42.144D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):21C2448,1135
(Q8×Dic7)⋊22C2 = C42.241D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):22C2448,1181
(Q8×Dic7)⋊23C2 = C42.176D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):23C2448,1184
(Q8×Dic7)⋊24C2 = C42.177D14φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):24C2448,1185
(Q8×Dic7)⋊25C2 = C14.422- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):25C2448,1265
(Q8×Dic7)⋊26C2 = Q8×C7⋊D4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):26C2448,1268
(Q8×Dic7)⋊27C2 = C14.452- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):27C2448,1270
(Q8×Dic7)⋊28C2 = C14.1062- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):28C2448,1280
(Q8×Dic7)⋊29C2 = C14.1072- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):29C2448,1284
(Q8×Dic7)⋊30C2 = C14.1482+ 1+4φ: C2/C1C2 ⊆ Out Q8×Dic7224(Q8xDic7):30C2448,1287
(Q8×Dic7)⋊31C2 = C4×Q8×D7φ: trivial image224(Q8xDic7):31C2448,1024
(Q8×Dic7)⋊32C2 = C4×Q82D7φ: trivial image224(Q8xDic7):32C2448,1026
(Q8×Dic7)⋊33C2 = C4○D4×Dic7φ: trivial image224(Q8xDic7):33C2448,1279

Non-split extensions G=N.Q with N=Q8×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×Dic7).1C2 = C7⋊Q16⋊C4φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).1C2448,323
(Q8×Dic7).2C2 = Dic74Q16φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).2C2448,324
(Q8×Dic7).3C2 = Q8⋊Dic14φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).3C2448,325
(Q8×Dic7).4C2 = Dic7.Q16φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).4C2448,328
(Q8×Dic7).5C2 = Q8.Dic14φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).5C2448,330
(Q8×Dic7).6C2 = Q8.2Dic14φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).6C2448,333
(Q8×Dic7).7C2 = Dic73Q16φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).7C2448,716
(Q8×Dic7).8C2 = Q16×Dic7φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).8C2448,717
(Q8×Dic7).9C2 = Q16⋊Dic7φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).9C2448,718
(Q8×Dic7).10C2 = Q8×Dic14φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).10C2448,1019
(Q8×Dic7).11C2 = Q85Dic14φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).11C2448,1022
(Q8×Dic7).12C2 = Q86Dic14φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).12C2448,1023
(Q8×Dic7).13C2 = Dic148Q8φ: C2/C1C2 ⊆ Out Q8×Dic7448(Q8xDic7).13C2448,1174

׿
×
𝔽