Copied to
clipboard

G = C4×Q82D7order 448 = 26·7

Direct product of C4 and Q82D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×Q82D7, C42.231D14, Q88(C4×D7), (C4×Q8)⋊19D7, (Q8×C28)⋊8C2, D2814(C2×C4), (C4×D28)⋊36C2, (D7×C42)⋊6C2, C2818(C4○D4), C4⋊C4.324D14, (Q8×Dic7)⋊32C2, D28⋊C447C2, C14.26(C23×C4), C28.36(C22×C4), (C2×Q8).201D14, Dic712(C4○D4), (C2×C14).117C24, (C2×C28).496C23, (C4×C28).169C22, D14.10(C22×C4), C22.36(C23×D7), D14⋊C4.125C22, (C2×D28).261C22, C4⋊Dic7.367C22, (Q8×C14).217C22, Dic7.25(C22×C4), (C4×Dic7).252C22, (C2×Dic7).213C23, (C22×D7).176C23, C74(C4×C4○D4), C4.36(C2×C4×D7), (C4×D7)⋊8(C2×C4), C2.6(D7×C4○D4), (C7×Q8)⋊11(C2×C4), C4⋊C47D747C2, C2.28(D7×C22×C4), C2.3(C2×Q82D7), C14.111(C2×C4○D4), (C2×Q82D7).9C2, (C2×C4×D7).246C22, (C7×C4⋊C4).345C22, (C2×C4).821(C22×D7), SmallGroup(448,1026)

Series: Derived Chief Lower central Upper central

C1C14 — C4×Q82D7
C1C7C14C2×C14C22×D7C2×C4×D7C2×Q82D7 — C4×Q82D7
C7C14 — C4×Q82D7
C1C2×C4C4×Q8

Generators and relations for C4×Q82D7
 G = < a,b,c,d,e | a4=b4=d7=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1252 in 310 conjugacy classes, 157 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4×Q8, C2×C4○D4, C4×D7, C4×D7, D28, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, C4×C4○D4, C4×Dic7, C4×Dic7, C4⋊Dic7, D14⋊C4, C4×C28, C7×C4⋊C4, C2×C4×D7, C2×D28, Q82D7, Q8×C14, D7×C42, C4×D28, C4⋊C47D7, D28⋊C4, Q8×Dic7, Q8×C28, C2×Q82D7, C4×Q82D7
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C4○D4, C24, D14, C23×C4, C2×C4○D4, C4×D7, C22×D7, C4×C4○D4, C2×C4×D7, Q82D7, C23×D7, D7×C22×C4, C2×Q82D7, D7×C4○D4, C4×Q82D7

Smallest permutation representation of C4×Q82D7
On 224 points
Generators in S224
(1 43 15 29)(2 44 16 30)(3 45 17 31)(4 46 18 32)(5 47 19 33)(6 48 20 34)(7 49 21 35)(8 50 22 36)(9 51 23 37)(10 52 24 38)(11 53 25 39)(12 54 26 40)(13 55 27 41)(14 56 28 42)(57 99 71 85)(58 100 72 86)(59 101 73 87)(60 102 74 88)(61 103 75 89)(62 104 76 90)(63 105 77 91)(64 106 78 92)(65 107 79 93)(66 108 80 94)(67 109 81 95)(68 110 82 96)(69 111 83 97)(70 112 84 98)(113 155 127 141)(114 156 128 142)(115 157 129 143)(116 158 130 144)(117 159 131 145)(118 160 132 146)(119 161 133 147)(120 162 134 148)(121 163 135 149)(122 164 136 150)(123 165 137 151)(124 166 138 152)(125 167 139 153)(126 168 140 154)(169 211 183 197)(170 212 184 198)(171 213 185 199)(172 214 186 200)(173 215 187 201)(174 216 188 202)(175 217 189 203)(176 218 190 204)(177 219 191 205)(178 220 192 206)(179 221 193 207)(180 222 194 208)(181 223 195 209)(182 224 196 210)
(1 64 8 57)(2 65 9 58)(3 66 10 59)(4 67 11 60)(5 68 12 61)(6 69 13 62)(7 70 14 63)(15 78 22 71)(16 79 23 72)(17 80 24 73)(18 81 25 74)(19 82 26 75)(20 83 27 76)(21 84 28 77)(29 92 36 85)(30 93 37 86)(31 94 38 87)(32 95 39 88)(33 96 40 89)(34 97 41 90)(35 98 42 91)(43 106 50 99)(44 107 51 100)(45 108 52 101)(46 109 53 102)(47 110 54 103)(48 111 55 104)(49 112 56 105)(113 169 120 176)(114 170 121 177)(115 171 122 178)(116 172 123 179)(117 173 124 180)(118 174 125 181)(119 175 126 182)(127 183 134 190)(128 184 135 191)(129 185 136 192)(130 186 137 193)(131 187 138 194)(132 188 139 195)(133 189 140 196)(141 197 148 204)(142 198 149 205)(143 199 150 206)(144 200 151 207)(145 201 152 208)(146 202 153 209)(147 203 154 210)(155 211 162 218)(156 212 163 219)(157 213 164 220)(158 214 165 221)(159 215 166 222)(160 216 167 223)(161 217 168 224)
(1 134 8 127)(2 135 9 128)(3 136 10 129)(4 137 11 130)(5 138 12 131)(6 139 13 132)(7 140 14 133)(15 120 22 113)(16 121 23 114)(17 122 24 115)(18 123 25 116)(19 124 26 117)(20 125 27 118)(21 126 28 119)(29 162 36 155)(30 163 37 156)(31 164 38 157)(32 165 39 158)(33 166 40 159)(34 167 41 160)(35 168 42 161)(43 148 50 141)(44 149 51 142)(45 150 52 143)(46 151 53 144)(47 152 54 145)(48 153 55 146)(49 154 56 147)(57 190 64 183)(58 191 65 184)(59 192 66 185)(60 193 67 186)(61 194 68 187)(62 195 69 188)(63 196 70 189)(71 176 78 169)(72 177 79 170)(73 178 80 171)(74 179 81 172)(75 180 82 173)(76 181 83 174)(77 182 84 175)(85 218 92 211)(86 219 93 212)(87 220 94 213)(88 221 95 214)(89 222 96 215)(90 223 97 216)(91 224 98 217)(99 204 106 197)(100 205 107 198)(101 206 108 199)(102 207 109 200)(103 208 110 201)(104 209 111 202)(105 210 112 203)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 189)(2 188)(3 187)(4 186)(5 185)(6 184)(7 183)(8 196)(9 195)(10 194)(11 193)(12 192)(13 191)(14 190)(15 175)(16 174)(17 173)(18 172)(19 171)(20 170)(21 169)(22 182)(23 181)(24 180)(25 179)(26 178)(27 177)(28 176)(29 217)(30 216)(31 215)(32 214)(33 213)(34 212)(35 211)(36 224)(37 223)(38 222)(39 221)(40 220)(41 219)(42 218)(43 203)(44 202)(45 201)(46 200)(47 199)(48 198)(49 197)(50 210)(51 209)(52 208)(53 207)(54 206)(55 205)(56 204)(57 140)(58 139)(59 138)(60 137)(61 136)(62 135)(63 134)(64 133)(65 132)(66 131)(67 130)(68 129)(69 128)(70 127)(71 126)(72 125)(73 124)(74 123)(75 122)(76 121)(77 120)(78 119)(79 118)(80 117)(81 116)(82 115)(83 114)(84 113)(85 168)(86 167)(87 166)(88 165)(89 164)(90 163)(91 162)(92 161)(93 160)(94 159)(95 158)(96 157)(97 156)(98 155)(99 154)(100 153)(101 152)(102 151)(103 150)(104 149)(105 148)(106 147)(107 146)(108 145)(109 144)(110 143)(111 142)(112 141)

G:=sub<Sym(224)| (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,99,71,85)(58,100,72,86)(59,101,73,87)(60,102,74,88)(61,103,75,89)(62,104,76,90)(63,105,77,91)(64,106,78,92)(65,107,79,93)(66,108,80,94)(67,109,81,95)(68,110,82,96)(69,111,83,97)(70,112,84,98)(113,155,127,141)(114,156,128,142)(115,157,129,143)(116,158,130,144)(117,159,131,145)(118,160,132,146)(119,161,133,147)(120,162,134,148)(121,163,135,149)(122,164,136,150)(123,165,137,151)(124,166,138,152)(125,167,139,153)(126,168,140,154)(169,211,183,197)(170,212,184,198)(171,213,185,199)(172,214,186,200)(173,215,187,201)(174,216,188,202)(175,217,189,203)(176,218,190,204)(177,219,191,205)(178,220,192,206)(179,221,193,207)(180,222,194,208)(181,223,195,209)(182,224,196,210), (1,64,8,57)(2,65,9,58)(3,66,10,59)(4,67,11,60)(5,68,12,61)(6,69,13,62)(7,70,14,63)(15,78,22,71)(16,79,23,72)(17,80,24,73)(18,81,25,74)(19,82,26,75)(20,83,27,76)(21,84,28,77)(29,92,36,85)(30,93,37,86)(31,94,38,87)(32,95,39,88)(33,96,40,89)(34,97,41,90)(35,98,42,91)(43,106,50,99)(44,107,51,100)(45,108,52,101)(46,109,53,102)(47,110,54,103)(48,111,55,104)(49,112,56,105)(113,169,120,176)(114,170,121,177)(115,171,122,178)(116,172,123,179)(117,173,124,180)(118,174,125,181)(119,175,126,182)(127,183,134,190)(128,184,135,191)(129,185,136,192)(130,186,137,193)(131,187,138,194)(132,188,139,195)(133,189,140,196)(141,197,148,204)(142,198,149,205)(143,199,150,206)(144,200,151,207)(145,201,152,208)(146,202,153,209)(147,203,154,210)(155,211,162,218)(156,212,163,219)(157,213,164,220)(158,214,165,221)(159,215,166,222)(160,216,167,223)(161,217,168,224), (1,134,8,127)(2,135,9,128)(3,136,10,129)(4,137,11,130)(5,138,12,131)(6,139,13,132)(7,140,14,133)(15,120,22,113)(16,121,23,114)(17,122,24,115)(18,123,25,116)(19,124,26,117)(20,125,27,118)(21,126,28,119)(29,162,36,155)(30,163,37,156)(31,164,38,157)(32,165,39,158)(33,166,40,159)(34,167,41,160)(35,168,42,161)(43,148,50,141)(44,149,51,142)(45,150,52,143)(46,151,53,144)(47,152,54,145)(48,153,55,146)(49,154,56,147)(57,190,64,183)(58,191,65,184)(59,192,66,185)(60,193,67,186)(61,194,68,187)(62,195,69,188)(63,196,70,189)(71,176,78,169)(72,177,79,170)(73,178,80,171)(74,179,81,172)(75,180,82,173)(76,181,83,174)(77,182,84,175)(85,218,92,211)(86,219,93,212)(87,220,94,213)(88,221,95,214)(89,222,96,215)(90,223,97,216)(91,224,98,217)(99,204,106,197)(100,205,107,198)(101,206,108,199)(102,207,109,200)(103,208,110,201)(104,209,111,202)(105,210,112,203), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,189)(2,188)(3,187)(4,186)(5,185)(6,184)(7,183)(8,196)(9,195)(10,194)(11,193)(12,192)(13,191)(14,190)(15,175)(16,174)(17,173)(18,172)(19,171)(20,170)(21,169)(22,182)(23,181)(24,180)(25,179)(26,178)(27,177)(28,176)(29,217)(30,216)(31,215)(32,214)(33,213)(34,212)(35,211)(36,224)(37,223)(38,222)(39,221)(40,220)(41,219)(42,218)(43,203)(44,202)(45,201)(46,200)(47,199)(48,198)(49,197)(50,210)(51,209)(52,208)(53,207)(54,206)(55,205)(56,204)(57,140)(58,139)(59,138)(60,137)(61,136)(62,135)(63,134)(64,133)(65,132)(66,131)(67,130)(68,129)(69,128)(70,127)(71,126)(72,125)(73,124)(74,123)(75,122)(76,121)(77,120)(78,119)(79,118)(80,117)(81,116)(82,115)(83,114)(84,113)(85,168)(86,167)(87,166)(88,165)(89,164)(90,163)(91,162)(92,161)(93,160)(94,159)(95,158)(96,157)(97,156)(98,155)(99,154)(100,153)(101,152)(102,151)(103,150)(104,149)(105,148)(106,147)(107,146)(108,145)(109,144)(110,143)(111,142)(112,141)>;

G:=Group( (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,99,71,85)(58,100,72,86)(59,101,73,87)(60,102,74,88)(61,103,75,89)(62,104,76,90)(63,105,77,91)(64,106,78,92)(65,107,79,93)(66,108,80,94)(67,109,81,95)(68,110,82,96)(69,111,83,97)(70,112,84,98)(113,155,127,141)(114,156,128,142)(115,157,129,143)(116,158,130,144)(117,159,131,145)(118,160,132,146)(119,161,133,147)(120,162,134,148)(121,163,135,149)(122,164,136,150)(123,165,137,151)(124,166,138,152)(125,167,139,153)(126,168,140,154)(169,211,183,197)(170,212,184,198)(171,213,185,199)(172,214,186,200)(173,215,187,201)(174,216,188,202)(175,217,189,203)(176,218,190,204)(177,219,191,205)(178,220,192,206)(179,221,193,207)(180,222,194,208)(181,223,195,209)(182,224,196,210), (1,64,8,57)(2,65,9,58)(3,66,10,59)(4,67,11,60)(5,68,12,61)(6,69,13,62)(7,70,14,63)(15,78,22,71)(16,79,23,72)(17,80,24,73)(18,81,25,74)(19,82,26,75)(20,83,27,76)(21,84,28,77)(29,92,36,85)(30,93,37,86)(31,94,38,87)(32,95,39,88)(33,96,40,89)(34,97,41,90)(35,98,42,91)(43,106,50,99)(44,107,51,100)(45,108,52,101)(46,109,53,102)(47,110,54,103)(48,111,55,104)(49,112,56,105)(113,169,120,176)(114,170,121,177)(115,171,122,178)(116,172,123,179)(117,173,124,180)(118,174,125,181)(119,175,126,182)(127,183,134,190)(128,184,135,191)(129,185,136,192)(130,186,137,193)(131,187,138,194)(132,188,139,195)(133,189,140,196)(141,197,148,204)(142,198,149,205)(143,199,150,206)(144,200,151,207)(145,201,152,208)(146,202,153,209)(147,203,154,210)(155,211,162,218)(156,212,163,219)(157,213,164,220)(158,214,165,221)(159,215,166,222)(160,216,167,223)(161,217,168,224), (1,134,8,127)(2,135,9,128)(3,136,10,129)(4,137,11,130)(5,138,12,131)(6,139,13,132)(7,140,14,133)(15,120,22,113)(16,121,23,114)(17,122,24,115)(18,123,25,116)(19,124,26,117)(20,125,27,118)(21,126,28,119)(29,162,36,155)(30,163,37,156)(31,164,38,157)(32,165,39,158)(33,166,40,159)(34,167,41,160)(35,168,42,161)(43,148,50,141)(44,149,51,142)(45,150,52,143)(46,151,53,144)(47,152,54,145)(48,153,55,146)(49,154,56,147)(57,190,64,183)(58,191,65,184)(59,192,66,185)(60,193,67,186)(61,194,68,187)(62,195,69,188)(63,196,70,189)(71,176,78,169)(72,177,79,170)(73,178,80,171)(74,179,81,172)(75,180,82,173)(76,181,83,174)(77,182,84,175)(85,218,92,211)(86,219,93,212)(87,220,94,213)(88,221,95,214)(89,222,96,215)(90,223,97,216)(91,224,98,217)(99,204,106,197)(100,205,107,198)(101,206,108,199)(102,207,109,200)(103,208,110,201)(104,209,111,202)(105,210,112,203), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,189)(2,188)(3,187)(4,186)(5,185)(6,184)(7,183)(8,196)(9,195)(10,194)(11,193)(12,192)(13,191)(14,190)(15,175)(16,174)(17,173)(18,172)(19,171)(20,170)(21,169)(22,182)(23,181)(24,180)(25,179)(26,178)(27,177)(28,176)(29,217)(30,216)(31,215)(32,214)(33,213)(34,212)(35,211)(36,224)(37,223)(38,222)(39,221)(40,220)(41,219)(42,218)(43,203)(44,202)(45,201)(46,200)(47,199)(48,198)(49,197)(50,210)(51,209)(52,208)(53,207)(54,206)(55,205)(56,204)(57,140)(58,139)(59,138)(60,137)(61,136)(62,135)(63,134)(64,133)(65,132)(66,131)(67,130)(68,129)(69,128)(70,127)(71,126)(72,125)(73,124)(74,123)(75,122)(76,121)(77,120)(78,119)(79,118)(80,117)(81,116)(82,115)(83,114)(84,113)(85,168)(86,167)(87,166)(88,165)(89,164)(90,163)(91,162)(92,161)(93,160)(94,159)(95,158)(96,157)(97,156)(98,155)(99,154)(100,153)(101,152)(102,151)(103,150)(104,149)(105,148)(106,147)(107,146)(108,145)(109,144)(110,143)(111,142)(112,141) );

G=PermutationGroup([[(1,43,15,29),(2,44,16,30),(3,45,17,31),(4,46,18,32),(5,47,19,33),(6,48,20,34),(7,49,21,35),(8,50,22,36),(9,51,23,37),(10,52,24,38),(11,53,25,39),(12,54,26,40),(13,55,27,41),(14,56,28,42),(57,99,71,85),(58,100,72,86),(59,101,73,87),(60,102,74,88),(61,103,75,89),(62,104,76,90),(63,105,77,91),(64,106,78,92),(65,107,79,93),(66,108,80,94),(67,109,81,95),(68,110,82,96),(69,111,83,97),(70,112,84,98),(113,155,127,141),(114,156,128,142),(115,157,129,143),(116,158,130,144),(117,159,131,145),(118,160,132,146),(119,161,133,147),(120,162,134,148),(121,163,135,149),(122,164,136,150),(123,165,137,151),(124,166,138,152),(125,167,139,153),(126,168,140,154),(169,211,183,197),(170,212,184,198),(171,213,185,199),(172,214,186,200),(173,215,187,201),(174,216,188,202),(175,217,189,203),(176,218,190,204),(177,219,191,205),(178,220,192,206),(179,221,193,207),(180,222,194,208),(181,223,195,209),(182,224,196,210)], [(1,64,8,57),(2,65,9,58),(3,66,10,59),(4,67,11,60),(5,68,12,61),(6,69,13,62),(7,70,14,63),(15,78,22,71),(16,79,23,72),(17,80,24,73),(18,81,25,74),(19,82,26,75),(20,83,27,76),(21,84,28,77),(29,92,36,85),(30,93,37,86),(31,94,38,87),(32,95,39,88),(33,96,40,89),(34,97,41,90),(35,98,42,91),(43,106,50,99),(44,107,51,100),(45,108,52,101),(46,109,53,102),(47,110,54,103),(48,111,55,104),(49,112,56,105),(113,169,120,176),(114,170,121,177),(115,171,122,178),(116,172,123,179),(117,173,124,180),(118,174,125,181),(119,175,126,182),(127,183,134,190),(128,184,135,191),(129,185,136,192),(130,186,137,193),(131,187,138,194),(132,188,139,195),(133,189,140,196),(141,197,148,204),(142,198,149,205),(143,199,150,206),(144,200,151,207),(145,201,152,208),(146,202,153,209),(147,203,154,210),(155,211,162,218),(156,212,163,219),(157,213,164,220),(158,214,165,221),(159,215,166,222),(160,216,167,223),(161,217,168,224)], [(1,134,8,127),(2,135,9,128),(3,136,10,129),(4,137,11,130),(5,138,12,131),(6,139,13,132),(7,140,14,133),(15,120,22,113),(16,121,23,114),(17,122,24,115),(18,123,25,116),(19,124,26,117),(20,125,27,118),(21,126,28,119),(29,162,36,155),(30,163,37,156),(31,164,38,157),(32,165,39,158),(33,166,40,159),(34,167,41,160),(35,168,42,161),(43,148,50,141),(44,149,51,142),(45,150,52,143),(46,151,53,144),(47,152,54,145),(48,153,55,146),(49,154,56,147),(57,190,64,183),(58,191,65,184),(59,192,66,185),(60,193,67,186),(61,194,68,187),(62,195,69,188),(63,196,70,189),(71,176,78,169),(72,177,79,170),(73,178,80,171),(74,179,81,172),(75,180,82,173),(76,181,83,174),(77,182,84,175),(85,218,92,211),(86,219,93,212),(87,220,94,213),(88,221,95,214),(89,222,96,215),(90,223,97,216),(91,224,98,217),(99,204,106,197),(100,205,107,198),(101,206,108,199),(102,207,109,200),(103,208,110,201),(104,209,111,202),(105,210,112,203)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,189),(2,188),(3,187),(4,186),(5,185),(6,184),(7,183),(8,196),(9,195),(10,194),(11,193),(12,192),(13,191),(14,190),(15,175),(16,174),(17,173),(18,172),(19,171),(20,170),(21,169),(22,182),(23,181),(24,180),(25,179),(26,178),(27,177),(28,176),(29,217),(30,216),(31,215),(32,214),(33,213),(34,212),(35,211),(36,224),(37,223),(38,222),(39,221),(40,220),(41,219),(42,218),(43,203),(44,202),(45,201),(46,200),(47,199),(48,198),(49,197),(50,210),(51,209),(52,208),(53,207),(54,206),(55,205),(56,204),(57,140),(58,139),(59,138),(60,137),(61,136),(62,135),(63,134),(64,133),(65,132),(66,131),(67,130),(68,129),(69,128),(70,127),(71,126),(72,125),(73,124),(74,123),(75,122),(76,121),(77,120),(78,119),(79,118),(80,117),(81,116),(82,115),(83,114),(84,113),(85,168),(86,167),(87,166),(88,165),(89,164),(90,163),(91,162),(92,161),(93,160),(94,159),(95,158),(96,157),(97,156),(98,155),(99,154),(100,153),(101,152),(102,151),(103,150),(104,149),(105,148),(106,147),(107,146),(108,145),(109,144),(110,143),(111,142),(112,141)]])

100 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4P4Q···4X4Y···4AD7A7B7C14A···14I28A···28L28M···28AV
order12222···244444···44···44···477714···1428···2828···28
size111114···1411112···27···714···142222···22···24···4

100 irreducible representations

dim111111111222222244
type+++++++++++++
imageC1C2C2C2C2C2C2C2C4D7C4○D4C4○D4D14D14D14C4×D7Q82D7D7×C4○D4
kernelC4×Q82D7D7×C42C4×D28C4⋊C47D7D28⋊C4Q8×Dic7Q8×C28C2×Q82D7Q82D7C4×Q8Dic7C28C42C4⋊C4C2×Q8Q8C4C2
# reps13333111163449932466

Matrix representation of C4×Q82D7 in GL4(𝔽29) generated by

17000
01700
0010
0001
,
28000
02800
00120
001217
,
28000
02800
00133
001116
,
222800
131000
0010
0001
,
102100
161900
00117
001618
G:=sub<GL(4,GF(29))| [17,0,0,0,0,17,0,0,0,0,1,0,0,0,0,1],[28,0,0,0,0,28,0,0,0,0,12,12,0,0,0,17],[28,0,0,0,0,28,0,0,0,0,13,11,0,0,3,16],[22,13,0,0,28,10,0,0,0,0,1,0,0,0,0,1],[10,16,0,0,21,19,0,0,0,0,11,16,0,0,7,18] >;

C4×Q82D7 in GAP, Magma, Sage, TeX

C_4\times Q_8\rtimes_2D_7
% in TeX

G:=Group("C4xQ8:2D7");
// GroupNames label

G:=SmallGroup(448,1026);
// by ID

G=gap.SmallGroup(448,1026);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,758,387,184,80,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^7=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽