# Extensions 1→N→G→Q→1 with N=C7×C4○D4 and Q=C4

Direct product G=N×Q with N=C7×C4○D4 and Q=C4
dρLabelID
C4○D4×C28224C4oD4xC28448,1300

Semidirect products G=N:Q with N=C7×C4○D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C7×C4○D4)⋊1C4 = C4○D4⋊Dic7φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4):1C4448,766
(C7×C4○D4)⋊2C4 = C28.(C2×D4)φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4):2C4448,767
(C7×C4○D4)⋊3C4 = C2×D42Dic7φ: C4/C2C2 ⊆ Out C7×C4○D4112(C7xC4oD4):3C4448,769
(C7×C4○D4)⋊4C4 = (D4×C14)⋊9C4φ: C4/C2C2 ⊆ Out C7×C4○D41124(C7xC4oD4):4C4448,770
(C7×C4○D4)⋊5C4 = C4○D4×Dic7φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4):5C4448,1279
(C7×C4○D4)⋊6C4 = C14.1062- 1+4φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4):6C4448,1280
(C7×C4○D4)⋊7C4 = C7×C23.24D4φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4):7C4448,824
(C7×C4○D4)⋊8C4 = C7×C23.36D4φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4):8C4448,825
(C7×C4○D4)⋊9C4 = C14×C4≀C2φ: C4/C2C2 ⊆ Out C7×C4○D4112(C7xC4oD4):9C4448,828
(C7×C4○D4)⋊10C4 = C7×C42⋊C22φ: C4/C2C2 ⊆ Out C7×C4○D41124(C7xC4oD4):10C4448,829
(C7×C4○D4)⋊11C4 = C7×C23.33C23φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4):11C4448,1303

Non-split extensions G=N.Q with N=C7×C4○D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C7×C4○D4).1C4 = C56.92D4φ: C4/C2C2 ⊆ Out C7×C4○D42244(C7xC4oD4).1C4448,118
(C7×C4○D4).2C4 = C56.70C23φ: C4/C2C2 ⊆ Out C7×C4○D42244(C7xC4oD4).2C4448,674
(C7×C4○D4).3C4 = C2×Q8.Dic7φ: C4/C2C2 ⊆ Out C7×C4○D4224(C7xC4oD4).3C4448,1271
(C7×C4○D4).4C4 = C28.76C24φ: C4/C2C2 ⊆ Out C7×C4○D41124(C7xC4oD4).4C4448,1272
(C7×C4○D4).5C4 = C7×D4.C8φ: C4/C2C2 ⊆ Out C7×C4○D42242(C7xC4oD4).5C4448,154
(C7×C4○D4).6C4 = C7×Q8○M4(2)φ: C4/C2C2 ⊆ Out C7×C4○D41124(C7xC4oD4).6C4448,1351
(C7×C4○D4).7C4 = C7×D4○C16φ: trivial image2242(C7xC4oD4).7C4448,912
(C7×C4○D4).8C4 = C14×C8○D4φ: trivial image224(C7xC4oD4).8C4448,1350

׿
×
𝔽