Extensions 1→N→G→Q→1 with N=C2×SD16 and Q=C14

Direct product G=N×Q with N=C2×SD16 and Q=C14
dρLabelID
SD16×C2×C14224SD16xC2xC14448,1353

Semidirect products G=N:Q with N=C2×SD16 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×SD16)⋊1C14 = C7×C8⋊D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):1C14448,876
(C2×SD16)⋊2C14 = C7×D4.3D4φ: C14/C7C2 ⊆ Out C2×SD161124(C2xSD16):2C14448,879
(C2×SD16)⋊3C14 = C7×C83D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):3C14448,904
(C2×SD16)⋊4C14 = C14×C8⋊C22φ: C14/C7C2 ⊆ Out C2×SD16112(C2xSD16):4C14448,1356
(C2×SD16)⋊5C14 = C14×C8.C22φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):5C14448,1357
(C2×SD16)⋊6C14 = C7×D4○SD16φ: C14/C7C2 ⊆ Out C2×SD161124(C2xSD16):6C14448,1360
(C2×SD16)⋊7C14 = C7×Q8⋊D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):7C14448,856
(C2×SD16)⋊8C14 = C7×D4⋊D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):8C14448,857
(C2×SD16)⋊9C14 = C7×C22⋊SD16φ: C14/C7C2 ⊆ Out C2×SD16112(C2xSD16):9C14448,858
(C2×SD16)⋊10C14 = C7×D4.7D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):10C14448,860
(C2×SD16)⋊11C14 = C7×C4⋊SD16φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):11C14448,868
(C2×SD16)⋊12C14 = C7×D4.2D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):12C14448,871
(C2×SD16)⋊13C14 = C7×C88D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):13C14448,873
(C2×SD16)⋊14C14 = C7×C85D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):14C14448,900
(C2×SD16)⋊15C14 = C7×C8.12D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16):15C14448,903
(C2×SD16)⋊16C14 = C14×C4○D8φ: trivial image224(C2xSD16):16C14448,1355

Non-split extensions G=N.Q with N=C2×SD16 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×SD16).1C14 = C7×SD16⋊C4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16).1C14448,848
(C2×SD16).2C14 = C7×C8.2D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16).2C14448,905
(C2×SD16).3C14 = C7×D4.D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16).3C14448,869
(C2×SD16).4C14 = C7×Q8.D4φ: C14/C7C2 ⊆ Out C2×SD16224(C2xSD16).4C14448,872
(C2×SD16).5C14 = SD16×C28φ: trivial image224(C2xSD16).5C14448,846

׿
×
𝔽