Copied to
clipboard

G = C2xSD16order 32 = 25

Direct product of C2 and SD16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xSD16, C4.7D4, C8:3C22, C4.2C23, Q8:1C22, D4.1C22, C22.15D4, (C2xC8):5C2, (C2xQ8):3C2, (C2xD4).6C2, C2.12(C2xD4), (C2xC4).27C22, 2-Sylow(GL(3,3)), SmallGroup(32,40)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2xSD16
C1C2C4C2xC4C2xD4 — C2xSD16
C1C2C4 — C2xSD16
C1C22C2xC4 — C2xSD16
C1C2C2C4 — C2xSD16

Generators and relations for C2xSD16
 G = < a,b,c | a2=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

Subgroups: 54 in 34 conjugacy classes, 22 normal (10 characteristic)
Quotients: C1, C2, C22, D4, C23, SD16, C2xD4, C2xSD16
4C2
4C2
2C4
2C4
2C22
2C22
4C22
4C22
2C2xC4
2D4
2Q8
2C23

Character table of C2xSD16

 class 12A2B2C2D2E4A4B4C4D8A8B8C8D
 size 11114422442222
ρ111111111111111    trivial
ρ21-11-11-1-111-1-1-111    linear of order 2
ρ31111-1-111-1-11111    linear of order 2
ρ41-11-1-11-11-11-1-111    linear of order 2
ρ51111-1-11111-1-1-1-1    linear of order 2
ρ61-11-1-11-111-111-1-1    linear of order 2
ρ711111111-1-1-1-1-1-1    linear of order 2
ρ81-11-11-1-11-1111-1-1    linear of order 2
ρ92-22-2002-2000000    orthogonal lifted from D4
ρ10222200-2-2000000    orthogonal lifted from D4
ρ1122-2-2000000--2-2-2--2    complex lifted from SD16
ρ122-2-22000000--2-2--2-2    complex lifted from SD16
ρ1322-2-2000000-2--2--2-2    complex lifted from SD16
ρ142-2-22000000-2--2-2--2    complex lifted from SD16

Permutation representations of C2xSD16
On 16 points - transitive group 16T48
Generators in S16
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)

G:=sub<Sym(16)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)>;

G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16)]])

G:=TransitiveGroup(16,48);

C2xSD16 is a maximal subgroup of
SD16:C4  Q8:D4  D4:D4  C22:SD16  D4.7D4  C4:SD16  D4.D4  D4.2D4  Q8.D4  C8:8D4  C8:D4  D4.3D4  C8:5D4  C8.12D4  C8:3D4  C8.2D4  D4oSD16  C3:S3:2SD16
C2xSD16 is a maximal quotient of
Q8:D4  C22:SD16  C4:SD16  D4.D4  C8:8D4  Q8:Q8  D4:2Q8  C23.46D4  C23.47D4  C4.4D8  C4.SD16  C8:5D4  C8:3Q8  C3:S3:2SD16

Matrix representation of C2xSD16 in GL3(F17) generated by

1600
0160
0016
,
100
0512
055
,
100
010
0016
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[1,0,0,0,5,5,0,12,5],[1,0,0,0,1,0,0,0,16] >;

C2xSD16 in GAP, Magma, Sage, TeX

C_2\times {\rm SD}_{16}
% in TeX

G:=Group("C2xSD16");
// GroupNames label

G:=SmallGroup(32,40);
// by ID

G=gap.SmallGroup(32,40);
# by ID

G:=PCGroup([5,-2,2,2,-2,-2,80,101,483,248,58]);
// Polycyclic

G:=Group<a,b,c|a^2=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

Export

Subgroup lattice of C2xSD16 in TeX
Character table of C2xSD16 in TeX

׿
x
:
Z
F
o
wr
Q
<