direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×SD16, C4.7D4, C8⋊3C22, C4.2C23, Q8⋊1C22, D4.1C22, C22.15D4, (C2×C8)⋊5C2, (C2×Q8)⋊3C2, (C2×D4).6C2, C2.12(C2×D4), (C2×C4).27C22, 2-Sylow(GL(3,3)), SmallGroup(32,40)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×SD16
G = < a,b,c | a2=b8=c2=1, ab=ba, ac=ca, cbc=b3 >
Character table of C2×SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)
G:=sub<Sym(16)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)>;
G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16)]])
G:=TransitiveGroup(16,48);
C2×SD16 is a maximal subgroup of
SD16⋊C4 Q8⋊D4 D4⋊D4 C22⋊SD16 D4.7D4 C4⋊SD16 D4.D4 D4.2D4 Q8.D4 C8⋊8D4 C8⋊D4 D4.3D4 C8⋊5D4 C8.12D4 C8⋊3D4 C8.2D4 D4○SD16 C3⋊S3⋊2SD16
C2×SD16 is a maximal quotient of
Q8⋊D4 C22⋊SD16 C4⋊SD16 D4.D4 C8⋊8D4 Q8⋊Q8 D4⋊2Q8 C23.46D4 C23.47D4 C4.4D8 C4.SD16 C8⋊5D4 C8⋊3Q8 C3⋊S3⋊2SD16
Matrix representation of C2×SD16 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
1 | 0 | 0 |
0 | 5 | 12 |
0 | 5 | 5 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 16 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[1,0,0,0,5,5,0,12,5],[1,0,0,0,1,0,0,0,16] >;
C2×SD16 in GAP, Magma, Sage, TeX
C_2\times {\rm SD}_{16}
% in TeX
G:=Group("C2xSD16");
// GroupNames label
G:=SmallGroup(32,40);
// by ID
G=gap.SmallGroup(32,40);
# by ID
G:=PCGroup([5,-2,2,2,-2,-2,80,101,483,248,58]);
// Polycyclic
G:=Group<a,b,c|a^2=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations
Export
Subgroup lattice of C2×SD16 in TeX
Character table of C2×SD16 in TeX