Extensions 1→N→G→Q→1 with N=C7xD16 and Q=C2

Direct product G=NxQ with N=C7xD16 and Q=C2
dρLabelID
C14xD16224C14xD16448,913

Semidirect products G=N:Q with N=C7xD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7xD16):1C2 = C7:D32φ: C2/C1C2 ⊆ Out C7xD162244+(C7xD16):1C2448,76
(C7xD16):2C2 = D7xD16φ: C2/C1C2 ⊆ Out C7xD161124+(C7xD16):2C2448,444
(C7xD16):3C2 = D16:3D7φ: C2/C1C2 ⊆ Out C7xD162244-(C7xD16):3C2448,446
(C7xD16):4C2 = D8:D14φ: C2/C1C2 ⊆ Out C7xD161124(C7xD16):4C2448,445
(C7xD16):5C2 = C7xD32φ: C2/C1C2 ⊆ Out C7xD162242(C7xD16):5C2448,175
(C7xD16):6C2 = C7xC16:C22φ: C2/C1C2 ⊆ Out C7xD161124(C7xD16):6C2448,917
(C7xD16):7C2 = C7xC4oD16φ: trivial image2242(C7xD16):7C2448,916

Non-split extensions G=N.Q with N=C7xD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7xD16).1C2 = D16.D7φ: C2/C1C2 ⊆ Out C7xD162244-(C7xD16).1C2448,77
(C7xD16).2C2 = C7xSD64φ: C2/C1C2 ⊆ Out C7xD162242(C7xD16).2C2448,176

׿
x
:
Z
F
o
wr
Q
<