Copied to
clipboard

G = C7xD16order 224 = 25·7

Direct product of C7 and D16

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C7xD16, C112:3C2, C16:1C14, D8:1C14, C14.15D8, C28.36D4, C56.24C22, (C7xD8):5C2, C4.1(C7xD4), C2.3(C7xD8), C8.2(C2xC14), SmallGroup(224,60)

Series: Derived Chief Lower central Upper central

C1C8 — C7xD16
C1C2C4C8C56C7xD8 — C7xD16
C1C2C4C8 — C7xD16
C1C14C28C56 — C7xD16

Generators and relations for C7xD16
 G = < a,b,c | a7=b16=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 72 in 28 conjugacy classes, 16 normal (12 characteristic)
Quotients: C1, C2, C22, C7, D4, C14, D8, C2xC14, D16, C7xD4, C7xD8, C7xD16
8C2
8C2
4C22
4C22
8C14
8C14
2D4
2D4
4C2xC14
4C2xC14
2C7xD4
2C7xD4

Smallest permutation representation of C7xD16
On 112 points
Generators in S112
(1 33 54 69 90 28 108)(2 34 55 70 91 29 109)(3 35 56 71 92 30 110)(4 36 57 72 93 31 111)(5 37 58 73 94 32 112)(6 38 59 74 95 17 97)(7 39 60 75 96 18 98)(8 40 61 76 81 19 99)(9 41 62 77 82 20 100)(10 42 63 78 83 21 101)(11 43 64 79 84 22 102)(12 44 49 80 85 23 103)(13 45 50 65 86 24 104)(14 46 51 66 87 25 105)(15 47 52 67 88 26 106)(16 48 53 68 89 27 107)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 22)(18 21)(19 20)(23 32)(24 31)(25 30)(26 29)(27 28)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(49 58)(50 57)(51 56)(52 55)(53 54)(59 64)(60 63)(61 62)(65 72)(66 71)(67 70)(68 69)(73 80)(74 79)(75 78)(76 77)(81 82)(83 96)(84 95)(85 94)(86 93)(87 92)(88 91)(89 90)(97 102)(98 101)(99 100)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(112)| (1,33,54,69,90,28,108)(2,34,55,70,91,29,109)(3,35,56,71,92,30,110)(4,36,57,72,93,31,111)(5,37,58,73,94,32,112)(6,38,59,74,95,17,97)(7,39,60,75,96,18,98)(8,40,61,76,81,19,99)(9,41,62,77,82,20,100)(10,42,63,78,83,21,101)(11,43,64,79,84,22,102)(12,44,49,80,85,23,103)(13,45,50,65,86,24,104)(14,46,51,66,87,25,105)(15,47,52,67,88,26,106)(16,48,53,68,89,27,107), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,22)(18,21)(19,20)(23,32)(24,31)(25,30)(26,29)(27,28)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(49,58)(50,57)(51,56)(52,55)(53,54)(59,64)(60,63)(61,62)(65,72)(66,71)(67,70)(68,69)(73,80)(74,79)(75,78)(76,77)(81,82)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90)(97,102)(98,101)(99,100)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,33,54,69,90,28,108)(2,34,55,70,91,29,109)(3,35,56,71,92,30,110)(4,36,57,72,93,31,111)(5,37,58,73,94,32,112)(6,38,59,74,95,17,97)(7,39,60,75,96,18,98)(8,40,61,76,81,19,99)(9,41,62,77,82,20,100)(10,42,63,78,83,21,101)(11,43,64,79,84,22,102)(12,44,49,80,85,23,103)(13,45,50,65,86,24,104)(14,46,51,66,87,25,105)(15,47,52,67,88,26,106)(16,48,53,68,89,27,107), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,22)(18,21)(19,20)(23,32)(24,31)(25,30)(26,29)(27,28)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(49,58)(50,57)(51,56)(52,55)(53,54)(59,64)(60,63)(61,62)(65,72)(66,71)(67,70)(68,69)(73,80)(74,79)(75,78)(76,77)(81,82)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90)(97,102)(98,101)(99,100)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([[(1,33,54,69,90,28,108),(2,34,55,70,91,29,109),(3,35,56,71,92,30,110),(4,36,57,72,93,31,111),(5,37,58,73,94,32,112),(6,38,59,74,95,17,97),(7,39,60,75,96,18,98),(8,40,61,76,81,19,99),(9,41,62,77,82,20,100),(10,42,63,78,83,21,101),(11,43,64,79,84,22,102),(12,44,49,80,85,23,103),(13,45,50,65,86,24,104),(14,46,51,66,87,25,105),(15,47,52,67,88,26,106),(16,48,53,68,89,27,107)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,22),(18,21),(19,20),(23,32),(24,31),(25,30),(26,29),(27,28),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(49,58),(50,57),(51,56),(52,55),(53,54),(59,64),(60,63),(61,62),(65,72),(66,71),(67,70),(68,69),(73,80),(74,79),(75,78),(76,77),(81,82),(83,96),(84,95),(85,94),(86,93),(87,92),(88,91),(89,90),(97,102),(98,101),(99,100),(103,112),(104,111),(105,110),(106,109),(107,108)]])

C7xD16 is a maximal subgroup of   C7:D32  D16.D7  D8:D14  D16:3D7

77 conjugacy classes

class 1 2A2B2C 4 7A···7F8A8B14A···14F14G···14R16A16B16C16D28A···28F56A···56L112A···112X
order122247···78814···1414···141616161628···2856···56112···112
size118821···1221···18···822222···22···22···2

77 irreducible representations

dim111111222222
type++++++
imageC1C2C2C7C14C14D4D8D16C7xD4C7xD8C7xD16
kernelC7xD16C112C7xD8D16C16D8C28C14C7C4C2C1
# reps112661212461224

Matrix representation of C7xD16 in GL4(F113) generated by

106000
010600
0010
0001
,
08200
625100
0018109
00418
,
513100
516200
0018109
0010995
G:=sub<GL(4,GF(113))| [106,0,0,0,0,106,0,0,0,0,1,0,0,0,0,1],[0,62,0,0,82,51,0,0,0,0,18,4,0,0,109,18],[51,51,0,0,31,62,0,0,0,0,18,109,0,0,109,95] >;

C7xD16 in GAP, Magma, Sage, TeX

C_7\times D_{16}
% in TeX

G:=Group("C7xD16");
// GroupNames label

G:=SmallGroup(224,60);
// by ID

G=gap.SmallGroup(224,60);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-2,361,2019,1017,165,5044,2530,88]);
// Polycyclic

G:=Group<a,b,c|a^7=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7xD16 in TeX

׿
x
:
Z
F
o
wr
Q
<