Extensions 1→N→G→Q→1 with N=C2 and Q=C4.D28

Direct product G=N×Q with N=C2 and Q=C4.D28
dρLabelID
C2×C4.D28224C2xC4.D28448,929


Non-split extensions G=N.Q with N=C2 and Q=C4.D28
extensionφ:Q→Aut NdρLabelID
C2.1(C4.D28) = (C2×C28)⋊10Q8central extension (φ=1)448C2.1(C4.D28)448,463
C2.2(C4.D28) = C429Dic7central extension (φ=1)448C2.2(C4.D28)448,470
C2.3(C4.D28) = (C2×C4)⋊6D28central extension (φ=1)224C2.3(C4.D28)448,473
C2.4(C4.D28) = (C2×C42)⋊D7central extension (φ=1)224C2.4(C4.D28)448,474
C2.5(C4.D28) = (C2×C28).28D4central stem extension (φ=1)448C2.5(C4.D28)448,193
C2.6(C4.D28) = (C2×Dic7)⋊3D4central stem extension (φ=1)224C2.6(C4.D28)448,206
C2.7(C4.D28) = (C2×C4).20D28central stem extension (φ=1)224C2.7(C4.D28)448,207
C2.8(C4.D28) = (C2×C4).21D28central stem extension (φ=1)224C2.8(C4.D28)448,208
C2.9(C4.D28) = C28.14Q16central stem extension (φ=1)448C2.9(C4.D28)448,215
C2.10(C4.D28) = C4.5D56central stem extension (φ=1)224C2.10(C4.D28)448,228
C2.11(C4.D28) = C42.264D14central stem extension (φ=1)224C2.11(C4.D28)448,231
C2.12(C4.D28) = C42.14D14central stem extension (φ=1)448C2.12(C4.D28)448,237
C2.13(C4.D28) = C42.19D14central stem extension (φ=1)224C2.13(C4.D28)448,247
C2.14(C4.D28) = C42.20D14central stem extension (φ=1)224C2.14(C4.D28)448,248

׿
×
𝔽