Copied to
clipboard

G = C4.D28order 224 = 25·7

5th non-split extension by C4 of D28 acting via D28/C28=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4.5D28, C426D7, C28.28D4, (C4×C28)⋊5C2, D14⋊C41C2, C2.6(C2×D28), C14.4(C2×D4), (C2×D28).2C2, (C2×C4).77D14, C71(C4.4D4), (C2×Dic14)⋊1C2, C2.7(C4○D28), C14.5(C4○D4), (C2×C14).16C23, (C2×C28).74C22, (C2×Dic7).3C22, (C22×D7).2C22, C22.37(C22×D7), SmallGroup(224,70)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4.D28
C1C7C14C2×C14C22×D7D14⋊C4 — C4.D28
C7C2×C14 — C4.D28
C1C22C42

Generators and relations for C4.D28
 G = < a,b,c | a4=b28=1, c2=a2, ab=ba, cac-1=a-1, cbc-1=a2b-1 >

Subgroups: 374 in 76 conjugacy classes, 33 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C42, C22⋊C4, C2×D4, C2×Q8, Dic7, C28, C28, D14, C2×C14, C4.4D4, Dic14, D28, C2×Dic7, C2×C28, C2×C28, C22×D7, D14⋊C4, C4×C28, C2×Dic14, C2×D28, C4.D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4.4D4, D28, C22×D7, C2×D28, C4○D28, C4.D28

Smallest permutation representation of C4.D28
On 112 points
Generators in S112
(1 34 102 81)(2 35 103 82)(3 36 104 83)(4 37 105 84)(5 38 106 57)(6 39 107 58)(7 40 108 59)(8 41 109 60)(9 42 110 61)(10 43 111 62)(11 44 112 63)(12 45 85 64)(13 46 86 65)(14 47 87 66)(15 48 88 67)(16 49 89 68)(17 50 90 69)(18 51 91 70)(19 52 92 71)(20 53 93 72)(21 54 94 73)(22 55 95 74)(23 56 96 75)(24 29 97 76)(25 30 98 77)(26 31 99 78)(27 32 100 79)(28 33 101 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 101 102 28)(2 27 103 100)(3 99 104 26)(4 25 105 98)(5 97 106 24)(6 23 107 96)(7 95 108 22)(8 21 109 94)(9 93 110 20)(10 19 111 92)(11 91 112 18)(12 17 85 90)(13 89 86 16)(14 15 87 88)(29 57 76 38)(30 37 77 84)(31 83 78 36)(32 35 79 82)(33 81 80 34)(39 75 58 56)(40 55 59 74)(41 73 60 54)(42 53 61 72)(43 71 62 52)(44 51 63 70)(45 69 64 50)(46 49 65 68)(47 67 66 48)

G:=sub<Sym(112)| (1,34,102,81)(2,35,103,82)(3,36,104,83)(4,37,105,84)(5,38,106,57)(6,39,107,58)(7,40,108,59)(8,41,109,60)(9,42,110,61)(10,43,111,62)(11,44,112,63)(12,45,85,64)(13,46,86,65)(14,47,87,66)(15,48,88,67)(16,49,89,68)(17,50,90,69)(18,51,91,70)(19,52,92,71)(20,53,93,72)(21,54,94,73)(22,55,95,74)(23,56,96,75)(24,29,97,76)(25,30,98,77)(26,31,99,78)(27,32,100,79)(28,33,101,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,101,102,28)(2,27,103,100)(3,99,104,26)(4,25,105,98)(5,97,106,24)(6,23,107,96)(7,95,108,22)(8,21,109,94)(9,93,110,20)(10,19,111,92)(11,91,112,18)(12,17,85,90)(13,89,86,16)(14,15,87,88)(29,57,76,38)(30,37,77,84)(31,83,78,36)(32,35,79,82)(33,81,80,34)(39,75,58,56)(40,55,59,74)(41,73,60,54)(42,53,61,72)(43,71,62,52)(44,51,63,70)(45,69,64,50)(46,49,65,68)(47,67,66,48)>;

G:=Group( (1,34,102,81)(2,35,103,82)(3,36,104,83)(4,37,105,84)(5,38,106,57)(6,39,107,58)(7,40,108,59)(8,41,109,60)(9,42,110,61)(10,43,111,62)(11,44,112,63)(12,45,85,64)(13,46,86,65)(14,47,87,66)(15,48,88,67)(16,49,89,68)(17,50,90,69)(18,51,91,70)(19,52,92,71)(20,53,93,72)(21,54,94,73)(22,55,95,74)(23,56,96,75)(24,29,97,76)(25,30,98,77)(26,31,99,78)(27,32,100,79)(28,33,101,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,101,102,28)(2,27,103,100)(3,99,104,26)(4,25,105,98)(5,97,106,24)(6,23,107,96)(7,95,108,22)(8,21,109,94)(9,93,110,20)(10,19,111,92)(11,91,112,18)(12,17,85,90)(13,89,86,16)(14,15,87,88)(29,57,76,38)(30,37,77,84)(31,83,78,36)(32,35,79,82)(33,81,80,34)(39,75,58,56)(40,55,59,74)(41,73,60,54)(42,53,61,72)(43,71,62,52)(44,51,63,70)(45,69,64,50)(46,49,65,68)(47,67,66,48) );

G=PermutationGroup([[(1,34,102,81),(2,35,103,82),(3,36,104,83),(4,37,105,84),(5,38,106,57),(6,39,107,58),(7,40,108,59),(8,41,109,60),(9,42,110,61),(10,43,111,62),(11,44,112,63),(12,45,85,64),(13,46,86,65),(14,47,87,66),(15,48,88,67),(16,49,89,68),(17,50,90,69),(18,51,91,70),(19,52,92,71),(20,53,93,72),(21,54,94,73),(22,55,95,74),(23,56,96,75),(24,29,97,76),(25,30,98,77),(26,31,99,78),(27,32,100,79),(28,33,101,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,101,102,28),(2,27,103,100),(3,99,104,26),(4,25,105,98),(5,97,106,24),(6,23,107,96),(7,95,108,22),(8,21,109,94),(9,93,110,20),(10,19,111,92),(11,91,112,18),(12,17,85,90),(13,89,86,16),(14,15,87,88),(29,57,76,38),(30,37,77,84),(31,83,78,36),(32,35,79,82),(33,81,80,34),(39,75,58,56),(40,55,59,74),(41,73,60,54),(42,53,61,72),(43,71,62,52),(44,51,63,70),(45,69,64,50),(46,49,65,68),(47,67,66,48)]])

C4.D28 is a maximal subgroup of
C42.D14  C8.8D28  C42.264D14  C8⋊D28  C42.20D14  C8.D28  M4(2)⋊D14  D4.10D28  D28.19D4  C42.36D14  D4.1D28  Q8.1D28  C42.214D14  C42.216D14  C42.74D14  C42.80D14  C42.82D14  C42.276D14  C42.277D14  C429D14  C42.92D14  C4210D14  C42.97D14  C42.99D14  D2823D4  Dic1423D4  D45D28  C42.114D14  C4217D14  C42.122D14  Q85D28  C42.133D14  C42.135D14  C42.136D14  C42.233D14  D7×C4.4D4  C4222D14  C42.145D14  C42.237D14  C42.157D14  C42.158D14  C4223D14  C42.164D14  C4226D14  C42.171D14  C42.178D14
C4.D28 is a maximal quotient of
(C2×C28).28D4  (C2×Dic7)⋊3D4  (C2×C4).20D28  (C2×C4).21D28  C28.14Q16  C4.5D56  C42.264D14  C42.14D14  C42.19D14  C42.20D14  (C2×C28)⋊10Q8  C429Dic7  (C2×C4)⋊6D28  (C2×C42)⋊D7

62 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H7A7B7C14A···14I28A···28AJ
order1222224···44477714···1428···28
size111128282···228282222···22···2

62 irreducible representations

dim11111222222
type+++++++++
imageC1C2C2C2C2D4D7C4○D4D14D28C4○D28
kernelC4.D28D14⋊C4C4×C28C2×Dic14C2×D28C28C42C14C2×C4C4C2
# reps1411123491224

Matrix representation of C4.D28 in GL4(𝔽29) generated by

7500
192200
001811
001011
,
282600
61900
00120
00012
,
232200
26600
00120
002417
G:=sub<GL(4,GF(29))| [7,19,0,0,5,22,0,0,0,0,18,10,0,0,11,11],[28,6,0,0,26,19,0,0,0,0,12,0,0,0,0,12],[23,26,0,0,22,6,0,0,0,0,12,24,0,0,0,17] >;

C4.D28 in GAP, Magma, Sage, TeX

C_4.D_{28}
% in TeX

G:=Group("C4.D28");
// GroupNames label

G:=SmallGroup(224,70);
// by ID

G=gap.SmallGroup(224,70);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,55,218,86,6917]);
// Polycyclic

G:=Group<a,b,c|a^4=b^28=1,c^2=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^2*b^-1>;
// generators/relations

׿
×
𝔽