Extensions 1→N→G→Q→1 with N=C22 and Q=D56

Direct product G=N×Q with N=C22 and Q=D56

Semidirect products G=N:Q with N=C22 and Q=D56
extensionφ:Q→Aut NdρLabelID
C221D56 = C5629D4φ: D56/C56C2 ⊆ Aut C22224C2^2:1D56448,649
C222D56 = D2813D4φ: D56/D28C2 ⊆ Aut C22112C2^2:2D56448,266

Non-split extensions G=N.Q with N=C22 and Q=D56
extensionφ:Q→Aut NdρLabelID
C22.1D56 = D1127C2φ: D56/C56C2 ⊆ Aut C222242C2^2.1D56448,438
C22.2D56 = C22.2D56φ: D56/D28C2 ⊆ Aut C22112C2^2.2D56448,27
C22.3D56 = D562C4φ: D56/D28C2 ⊆ Aut C221124C2^2.3D56448,75
C22.4D56 = C22.D56φ: D56/D28C2 ⊆ Aut C22224C2^2.4D56448,270
C22.5D56 = C16⋊D14φ: D56/D28C2 ⊆ Aut C221124+C2^2.5D56448,442
C22.6D56 = C16.D14φ: D56/D28C2 ⊆ Aut C222244-C2^2.6D56448,443
C22.7D56 = C56.78D4central extension (φ=1)448C2^2.7D56448,60
C22.8D56 = C1125C4central extension (φ=1)448C2^2.8D56448,61
C22.9D56 = C1126C4central extension (φ=1)448C2^2.9D56448,62
C22.10D56 = C2.D112central extension (φ=1)224C2^2.10D56448,66
C22.11D56 = C28.9C42central extension (φ=1)448C2^2.11D56448,108
C22.12D56 = C2×D112central extension (φ=1)224C2^2.12D56448,436
C22.13D56 = C2×C112⋊C2central extension (φ=1)224C2^2.13D56448,437
C22.14D56 = C2×Dic56central extension (φ=1)448C2^2.14D56448,439
C22.15D56 = C2×C561C4central extension (φ=1)448C2^2.15D56448,639
C22.16D56 = C2×C2.D56central extension (φ=1)224C2^2.16D56448,646